首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1887篇
  免费   134篇
  2021篇
  2021年   11篇
  2017年   20篇
  2016年   18篇
  2015年   48篇
  2014年   65篇
  2013年   87篇
  2012年   120篇
  2011年   101篇
  2010年   61篇
  2009年   51篇
  2008年   82篇
  2007年   60篇
  2006年   77篇
  2005年   86篇
  2004年   75篇
  2003年   77篇
  2002年   70篇
  2001年   79篇
  2000年   64篇
  1999年   61篇
  1998年   18篇
  1997年   19篇
  1996年   16篇
  1995年   22篇
  1994年   32篇
  1993年   21篇
  1992年   46篇
  1991年   46篇
  1990年   40篇
  1989年   31篇
  1988年   35篇
  1987年   25篇
  1986年   19篇
  1985年   42篇
  1984年   26篇
  1983年   23篇
  1982年   12篇
  1981年   12篇
  1980年   13篇
  1979年   21篇
  1978年   20篇
  1977年   14篇
  1976年   11篇
  1975年   15篇
  1974年   16篇
  1973年   13篇
  1972年   9篇
  1971年   18篇
  1970年   13篇
  1969年   10篇
排序方式: 共有2021条查询结果,搜索用时 15 毫秒
101.
Ten years ago we showed for the first time that Notch signalling is required in segmentation in spiders, indicating the existence of similar mechanisms in arthropod and vertebrate segmentation. However, conflicting results in various arthropod groups hampered our understanding of the ancestral function of Notch in arthropod segmentation. Here we fill a crucial data gap in arthropods and analyse segmentation in a crustacean embryo. We analyse the expression of homologues of the Drosophila and vertebrate segmentation genes and show that members of the Notch signalling pathway are expressed at the same time as the pair-rule genes. Furthermore, inactivation of Notch signalling results in irregular boundaries of the odd-skipped-like expression domains and affects the formation of segments. In severe cases embryos appear unsegmented. We suggest two scenarios for the function of Notch signalling in segmentation. The first scenario agrees with a segmentation clock involving Notch signalling, while the second scenario discusses an alternative mechanism of Notch function which is integrated into a hierarchical segmentation cascade.  相似文献   
102.
Colony size is a fundamental attribute of insect societies that appears to play an important role in their organization of work. In the harvester ant Pogonomyrmex californicus, division of labor increases with colony size during colony ontogeny and among unmanipulated colonies of the same age. However, the mechanism(s) integrating individual task specialization and colony size is unknown. To test whether the scaling of division of labor is an emergent epiphenomenon, as predicted by self-organizational models of task performance, we manipulated colony size in P. californicus and quantified short-term behavioral responses of individuals and colonies. Variation in colony size failed to elicit a change in division of labor, suggesting that colony-size effects on task specialization are mediated by slower developmental processes and/or correlates of colony size that were missing from our experiment. In contrast, the proportional allocation of workers to tasks shifted with colony size, suggesting that task needs or priorities depend, in part, on colony size alone. Finally, although task allocation was flexible, colony members differed consistently in task performance and spatial tendency across colony size treatments. Sources of interindividual behavioral variability include worker age and genotype (matriline).  相似文献   
103.
Ove Eriksson 《Ecography》2013,36(4):403-413
This paper discusses the ecology of species that were favoured by the development of the cultural landscape in central and NW Europe beginning in the Neolithic and the Bronze Age, with a focus on mechanisms behind species responses to this landscape transformation. A fraction of species may have maintained their realized niches from the pre‐ agricultural landscape and utilized similar niches created by the landscape transformation. However, I suggest that many species responded by altering their niche relationships, and a conceptual model is proposed for this response, based on niche construction, ecological opportunity and niche shifts. Human‐mediated niche construction, associated with clearing of forests and creation of pastures and fields promoted niche shifts towards open habitats, and species exploited the ecological opportunity provided by these created environments. This process was initially purely ecological, i.e. the new habitats must have been included in the original fundamental niche of the species. Two other features of human‐mediated niche construction, increased interconnectivity and increased spatial stability of open habitats, resulted in species accumulating in the habitats of the constructed landscape. As a consequence, selection processes were initiated favouring traits promoting fitness in the constructed landscape. This process implied a feed‐back to niche shifts, but now also including evolutionary changes in fundamental niches. I briefly discuss whether this model can be applied also to present‐day anthropogenic impact on landscapes. A general conclusion is that ecological and evolutionary changes in species niches should be more explicitly considered in modeling and predictions of species response to present‐day landscape and land‐use changes.  相似文献   
104.
We previously showed that injury by partial duct ligation (PDL) in adult mouse pancreas activates Neurogenin 3 (Ngn3)+ progenitor cells that can differentiate to β cells ex vivo. Here we evaluate the role of Ngn3+ cells in β cell expansion in situ. PDL not only induced doubling of the β cell volume but also increased the total number of islets. β cells proliferated without extended delay (the so-called ‘refractory'' period), their proliferation potential was highest in small islets, and 86% of the β cell expansion was attributable to proliferation of pre-existing β cells. At sufficiently high Ngn3 expression level, upto 14% of all β cells and 40% of small islet β cells derived from non-β cells. Moreover, β cell proliferation was blunted by a selective ablation of Ngn3+ cells but not by conditional knockout of Ngn3 in pre-existing β cells supporting a key role for Ngn3+ insulin cells in β cell proliferation and expansion. We conclude that Ngn3+ cell-dependent proliferation of pre-existing and newly-formed β cells as well as reprogramming of non-β cells contribute to in vivo β cell expansion in the injured pancreas of adult mice.  相似文献   
105.
Due to anthropogenic CO2 emissions, our oceans have gradually become warmer and more acidic. To better understand the consequences of this, there is a need for long‐term (months) and multistressor experiments. Earlier research demonstrates that the effects of global climate change are specific to species and life stages. We exposed berried Norway lobsters (Nephrops norvegicus), during 4 months to the combination of six ecologically relevant temperatures (5–18°C) and reduced pH (by 0.4 units). Embryonic responses were investigated by quantifying proxies for development rate and fitness including: % yolk consumption, mean heart rate, rate of oxygen consumption, and oxidative stress. We found no interactions between temperature and pH, and reduced pH only affected the level of oxidative stress significantly, with a higher level of oxidative stress in the controls. Increased temperature and % yolk consumed had positive effects on all parameters except on oxidative stress, which did not change in response to temperature. There was a difference in development rate between the ranges of 5–10°C (Q10: 5.4) and 10–18°C (Q10: 2.9), implicating a thermal break point at 10°C or below. No thermal limit to a further increased development rate was found. The insensitivity of N. norvegicus embryos to low pH might be explained by adaptation to a pH‐reduced external habitat and/or internal hypercapnia during incubation. Our results thus indicate that this species would benefit from global warming and be able to withstand the predicted decrease in ocean pH in the next century during their earliest life stages. However, future studies need to combine low pH and elevated temperature treatments with hypoxia as hypoxic events are frequently and increasingly occurring in the habitat of benthic species.  相似文献   
106.
107.
Objective: The diagnostic criteria and the clinical usefulness of the metabolic syndrome (MetSy) are currently questioned. The objective was to describe the structure of MetSy and to evaluate its components for prediction of diabetes type 2 (T2DM). Research Methods and Procedures: This was a case‐referent study nested within a population‐based health survey. Among 33,336 participants, we identified 177 initially non‐diabetic individuals who developed T2DM after 0.1 to 10.5 years (mean, 5.4 years), and, for each diabetes case, two referents matched for sex, age, and year of health survey. Baseline variables included oral glucose tolerance test, BMI, blood pressure, blood lipids, adipokines, inflammatory markers, insulin resistance, and β‐cell function. Exploratory and confirmative factor analyses were applied to hypothesize the structure of the MetSy. The prediction of T2DM by the different factors was evaluated by multivariate logistic regression analysis. Results: A hypothetical five‐factor model of intercorrelated composite factors was generated. The inflammation, dyslipidemia, and blood pressure factors were predicitive only in univariate analysis. In multivariable analyses, two factors independently and significantly predicted T2DM: an obesity/insulin resistance factor and a glycemia factor. The composite factors did not improve the prediction of T2DM compared with single variables. Among the original variables, fasting glucose, proinsulin, BMI, and blood pressure values were predictive of T2DM. Discussion: Our data support the concept of a MetSy, and we propose five separate clusters of components. The inflammation and dyslipidemia factors were not independently associated with diabetes risk. In contrast, obesity and accompanying insulin resistance and β‐cell decompensation seem to be two core perturbations promoting and predicting progression to T2DM.  相似文献   
108.
The crystal structure of uridine monophosphate kinase (UMP kinase, UMPK) from the opportunistic pathogen Ureaplasma parvum was determined and showed similar three-dimensional fold as other bacterial and archaeal UMPKs that all belong to the amino acid kinase family. Recombinant UpUMPK exhibited Michaelis-Menten kinetics with UMP, with K(m) and V(max) values of 214 +/- 4 microm and 262 +/- 24 micromol.min(-1).mg(-1), respectively, but with ATP as variable substrate the kinetic analysis showed positive cooperativity, with an n value of 1.5 +/- 0.1. The end-product UTP was a competitive inhibitor against UMP and a noncompetitive inhibitor towards ATP. Unlike UMPKs from other bacteria, which are activated by GTP, GTP had no detectable effect on UpUMPK activity. An attempt to create a GTP-activated enzyme was made using site-directed mutagenesis. The mutant enzyme F133N (F133 corresponds to the residue in Escherichia coli that is involved in GTP activation), with F133A as a control, were expressed, purified and characterized. Both enzymes exhibited negative cooperativity with UMP, and GTP had no effect on enzyme activity, demonstrating that F133 is involved in subunit interactions but apparently not in GTP activation. The physiological role of UpUMPK in bacterial nucleic acid synthesis and its potential as target for development of antimicrobial agents are discussed.  相似文献   
109.
BACKGROUND: Diabetes mellitus during pregnancy increases the risk for congenital heart disease in the offspring. The majority of the cardiovascular malformations occur in the outflow tract and pharyngeal arch arteries, where neural crest cells are essential for normal development. We studied the effects of specific exposure of neural crest cells to elevated glucose on heart development. Antioxidants reduce the damaging effect of glucose on neural crest cells in vitro; therefore, we investigated the effect of supplementing N-acetylcysteine in vivo. METHODS: Cardiac neural crest of HH 8-12 chicken embryos was directly exposed by a single injection in the neural tube with 30 mM D-glucose (or 30 mM L-glucose as a control). To examine the effect of a reduction in oxidative stress, we added 2 mM N-acetylcysteine to the injected D-glucose. RESULTS: Exposure of neural crest cells to elevated D-glucose-induced congenital heart malformations in 82% of the embryos. In the embryos injected with L-glucose, only 9% developed a heart malformation. As expected, all malformations were located in the outflow tract and pharyngeal arch arteries. The frequency of heart malformations decreased from 82% to 27% when 2 mM N-acetylcysteine was added to the injected D-glucose. CONCLUSIONS: These data are the first to confirm that the vulnerability of neural crest cells to elevated glucose induces congenital heart malformations. The fact that N-acetylcysteine limits the teratogenicity of glucose implies that its damaging effect is mediated by an increase of oxidative stress in the neural crest cells.  相似文献   
110.
The Drosophila Alk receptor tyrosine kinase (RTK) drives founder cell specification in the developing visceral mesoderm and is crucial for the formation of the fly gut. Activation of Alk occurs in response to the secreted ligand Jelly Belly. No homologues of Jelly Belly are described in vertebrates, therefore we have approached the question of the evolutionary conservation of the Jeb-Alk interaction by asking whether vertebrate ALK is able to function in Drosophila. Here we show that the mouse ALK RTK is unable to rescue a Drosophila Alk mutant, indicating that mouse ALK is unable to recognise and respond to the Drosophila Jeb molecule. Furthermore, the overexpression of a dominant-negative Drosophila Alk transgene is able to block the visceral muscle fusion event, which an identically designed dominant-negative construct for the mouse ALK is not. Using PC12 cells as a model for neurite outgrowth, we show here for the first time that activation of dAlk by Jeb results in neurite extension. However, the mouse Alk receptor is unable to respond in any way to the Drosophila Jeb protein in the PC12 system. In conclusion, we find that the mammalian ALK receptor is unable to respond to the Jeb ligand in vivo or in vitro. These results suggest that either (i) mouse ALK and "mouse Jeb" have co-evolved to the extent that mALK can no longer recognise the Drosophila Jeb ligand or (ii) that the mALK RTK has evolved such that it is no longer activated by a Jeb-like molecule in vertebrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号