首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2305篇
  免费   166篇
  国内免费   1篇
  2472篇
  2023年   11篇
  2022年   19篇
  2021年   39篇
  2020年   14篇
  2019年   18篇
  2018年   28篇
  2017年   24篇
  2016年   50篇
  2015年   72篇
  2014年   100篇
  2013年   116篇
  2012年   142篇
  2011年   133篇
  2010年   103篇
  2009年   80篇
  2008年   129篇
  2007年   109篇
  2006年   104篇
  2005年   115篇
  2004年   85篇
  2003年   132篇
  2002年   101篇
  2001年   29篇
  2000年   27篇
  1999年   37篇
  1998年   47篇
  1997年   26篇
  1996年   34篇
  1995年   35篇
  1994年   23篇
  1993年   34篇
  1992年   36篇
  1991年   27篇
  1990年   28篇
  1989年   27篇
  1988年   17篇
  1987年   25篇
  1986年   12篇
  1985年   29篇
  1984年   22篇
  1983年   17篇
  1982年   27篇
  1981年   18篇
  1980年   22篇
  1979年   26篇
  1978年   11篇
  1977年   14篇
  1976年   12篇
  1974年   12篇
  1973年   11篇
排序方式: 共有2472条查询结果,搜索用时 0 毫秒
81.

The objective of this study was to evaluate the effects of different natural ventilation systems and explant types on the growth and volatile compound content of Lippia gracilis cultured in vitro. The treatments consisted of four membrane systems (without membrane, with one, two, and four porous membranes) and two explant types (nodal segments with and without a pair of leaves). The evaluation of growth, photosynthetic pigments and chemical analysis of the volatile fraction were performed at 35 days of cultivation in half strength MS basal medium. Natural ventilation systems significantly influenced the in vitro growth and volatile fraction of L. gracilis. Explants with a pair of leaves obtained the best experimental responses. The natural ventilation system with four membranes provided the best growth parameters and leaf area response of L. gracilis explants with leaves. The photosynthetic pigments decreased with an increase in the number of porous membranes in the culture flask. Variations in the number, content, and profile of volatile compounds under the influence of natural ventilation systems were observed. Major constituents such as ρ-cymene, γ-terpinene, thymol, carvacrol, and E-caryophyllene, regardless of experimental conditions, were identified. The highest carvacrol and thymol contents were observed in plantlets grown in culture flasks with four porous membranes. To maximize the content of carvacrol and thymol from the in vitro culture of L. gracilis, explants with a pair of leaves and four porous membranes in culture flasks are recommended for use.

  相似文献   
82.
83.
Nanotechnology has become one of the several approaches attempting to ameliorate the severe effect of drought on plant''s production and to increase the plants tolerance against water deficit for the water economy. In this research, the effect of foliar application of TiO2, nanoparticles or ordinary TiO2, on Helianthus annuus subjected to different levels of water deficit was studied. Cell membrane injury increased by increasing the level of water deficit and TiO2 concentration, and both types of TiO2 affected the leaves in analogous manner. Ord-TiO2 increased H2O2 generation by 67–240% and lipid peroxidation by 4–67% in leaves. These increases were more than that induced by Nano-TiO2 and the effect was concentration dependent. Proline significantly increased in leaves by water deficit stress, reaching at 25% field capacity (FC) to more than fivefold compared to that in plants grown on full FC. Spraying plants with water significantly decreased the activities of enzymes in the water deficit stressed roots. The water deficit stress exerted the highest magnitude of effect on the changes of cell membrane injury, MDA, proline content, and activities of CAT and GPX. Nano-TiO2 was having the highest effect on contents of H2O2 and GPX activity. In roots, the level of water deficit causes highest effect on enzyme activities, but TiO2 influenced more on the changes of MDA and H2O2 contents. GPX activity increased by 283% in leaves of plants treated with 50 and 150 ppm Nano-TiO2, while increased by 170% in those treated with Ord-TiO2, but APX and CAT activities increased by 17–197%, in average, with Ord-TiO2. This study concluded that Nano-TiO2 didn’t ameliorate the effects of drought stress on H. annuus but additively increased the stress, so its use in nano-phytotechnology mustn’t be expanded without extensive studies.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-022-01153-z.  相似文献   
84.
85.
Two out of three extremely thermophilic anaerobic archaea, isolated from deep-sea hydrothermal vents, produced pullulanase activity in the presence of maltose in the growth medium. Enzyme activities were mainly extracellular and characterized by optimum temperatures of 95°C and 80–95°C, optimum pH of 5.0–7.0 and a high degree of thermostability. One strain when grown in a fermenter with maltose as inducer produced pullulanase at 35 U/l. © Rapid Science Ltd. 1998  相似文献   
86.
87.
The unc-52 gene of Claenorhabditis elegans encodes a homologue of the basement membrane heparan sulfate proteoglycan perlecan. Viable alleles reduce the abundance of UNC-52 in late larval stages and increase the frequency of distal tip cell (DTC) migration defects caused by mutations disrupting the UNC-6/netrin guidance system. These unc-52 alleles do not cause circumferential DTC migration defects in an otherwise wild-type genetic background. The effects of unc-52 mutations on DTC migrations are distinct from effects on myofilament organization and can be partially suppressed by mutations in several genes encoding growth factor-like molecules, including EGL-17/FGF, UNC-129/TGF-beta, DBL-1/TGF-beta, and EGL-20/WNT. We propose that UNC-52 serves dual roles in C. elegans larval development in the maintenance of muscle structure and the regulation of growth factor-like signaling pathways.  相似文献   
88.
Sphingosine-1-phosphate is a sphingolipid metabolite that regulates cell proliferation, migration and apoptosis through specific signaling pathways. Sphingosine-1-phosphate lyase catalyzes the conversion of sphingosine-1-phosphate to ethanolamine phosphate and a fatty aldehyde. We report the cloning of the Drosophila sphingosine-1-phosphate lyase gene (Sply) and demonstrate its importance for adult muscle development and integrity, reproduction and larval viability. Sply expression is temporally regulated, with onset of expression during mid-embryogenesis. Sply null mutants accumulate both phosphorylated and unphosphorylated sphingoid bases and exhibit semi-lethality, increased apoptosis in developing embryos, diminished egg-laying, and gross pattern abnormalities in dorsal longitudinal flight muscles. These defects are corrected by restoring Sply expression or by introduction of a suppressor mutation that diminishes sphingolipid synthesis and accumulation of sphingolipid intermediates. This is the first demonstration of novel and complex developmental pathologies directly linked to a disruption of sphingolipid catabolism in metazoans.  相似文献   
89.
Adapting metabolic enzymes of microorganisms to low temperature environments may require a difficult compromise between velocity and affinity. We have investigated catalytic efficiency in a key metabolic enzyme (dihydrofolate reductase) of Moritella profunda sp. nov., a strictly psychrophilic bacterium with a maximal growth rate at 2 degrees C or less. The enzyme is monomeric (Mr=18,291), 55% identical to its Escherichia coli counterpart, and displays Tm and denaturation enthalpy changes much lower than E. coli and Thermotoga maritima homologues. Its stability curve indicates a maximum stability above the temperature range of the organism, and predicts cold denaturation below 0 degrees C. At mesophilic temperatures the apparent Km value for dihydrofolate is 50- to 80-fold higher than for E. coli, Lactobacillus casei, and T. maritima dihydrofolate reductases, whereas the apparent Km value for NADPH, though higher, remains in the same order of magnitude. At 5 degrees C these values are not significantly modified. The enzyme is also much less sensitive than its E. coli counterpart to the inhibitors methotrexate and trimethoprim. The catalytic efficiency (kcat/Km) with respect to dihydrofolate is thus much lower than in the other three bacteria. The higher affinity for NADPH could have been maintained by selection since NADPH assists the release of the product tetrahydrofolate. Dihydrofolate reductase adaptation to low temperature thus appears to have entailed a pronounced trade-off between affinity and catalytic velocity. The kinetic features of this psychrophilic protein suggest that enzyme adaptation to low temperature may be constrained by natural limits to optimization of catalytic efficiency.  相似文献   
90.
To meet the technical challenge of recovering human IgG fusion protein from transgenic whole goat milk at reasonable cost with high purity and yield, a predictive aggregate transport model for microfiltration has been developed (Baruah and Belfort, 2003). Here, to test the model's predictability of permeate flux and mass transport, a comprehensive series of experiments with varying wall shear rate, feed temperature, feed concentration, and module design are presented. A very good fit was obtained between the model predictions and measurements for a wide variety of experimental conditions. For microfiltration module design comparison, a linear hollow fiber module (representing current commercial technologies) gave lower permeation flux and higher yield than a helical hollow fiber module (representing the latest self-cleaning methodology). These results are easily explained with the model that is now being used to define operating conditions for maximizing performance. The procedure described by the model is generalizable and can be used to obtain optimal filtration performance for applications other than milk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号