首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1210篇
  免费   156篇
  国内免费   1篇
  2021年   20篇
  2018年   19篇
  2017年   17篇
  2016年   22篇
  2015年   37篇
  2014年   38篇
  2013年   64篇
  2012年   65篇
  2011年   52篇
  2010年   28篇
  2009年   32篇
  2008年   56篇
  2007年   52篇
  2006年   32篇
  2005年   43篇
  2004年   32篇
  2003年   34篇
  2002年   32篇
  2001年   38篇
  2000年   25篇
  1999年   26篇
  1998年   10篇
  1997年   26篇
  1996年   12篇
  1995年   11篇
  1994年   11篇
  1992年   19篇
  1991年   31篇
  1990年   11篇
  1989年   27篇
  1988年   18篇
  1987年   24篇
  1986年   27篇
  1985年   24篇
  1984年   20篇
  1982年   16篇
  1981年   13篇
  1980年   10篇
  1979年   10篇
  1978年   15篇
  1977年   23篇
  1975年   10篇
  1974年   14篇
  1972年   15篇
  1971年   12篇
  1969年   13篇
  1968年   11篇
  1967年   10篇
  1965年   10篇
  1960年   9篇
排序方式: 共有1367条查询结果,搜索用时 62 毫秒
121.
Most empirical evidence suggests that balancing selection does not counter the effects of genetic drift in shaping postbottleneck major histocompatibility complex (MHC) genetic diversity when population declines are severe or prolonged. However, few studies have been able to include data from historical specimens, or to compare populations/species with different bottleneck histories. In this study, we examined MHC class II B and microsatellite diversity in four New Zealand passerine (songbird) species that experienced moderate to very severe declines. We compared diversity from historical samples (collected c. 1884–1938) to present‐day populations. Using a Bayesian framework, we found that the change in genetic diversity from historical to contemporary samples was affected by three main factors: (i) whether the data were based on MHC or microsatellite markers, (ii) species (as a surrogate for bottleneck severity) and (iii) whether the comparison between historical and contemporary samples was made using historical samples originating from the mainland, or using historical samples originating from islands. The greatest losses in genetic diversity occurred for the most severely bottlenecked species, particularly between historical mainland and contemporary samples. Additionally, where loss of diversity occurred, the change was greater for MHC genes compared to microsatellite loci.  相似文献   
122.
Destruction of target cells by cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells requires the coordinated action of the pore forming protein perforin (Pfp) and the granzyme (Gzm) family of serine proteases. The activation of a number of serine proteases, including GzmA and B, is predominately mediated by cathepsin C (CatC). Deficiencies in CatC-null mice were therefore expected to replicate the defects observed in GzmAB-deficient mice. We have previously determined that GzmAB-deficient mice exhibit increased susceptibility to murine cytomegalovirus (MCMV) infection. Here, we have compared the ability of CatC(-/-) mice to control MCMV infection with that of GzmAB-deficient animals. We found that CatC(-/-) mice have organ-specific defects in the ability to control MCMV replication, a phenotype that is distinct to that observed in GzmAB(-/-) mice. Significantly, the cytolytic function of CatC-deficient NK cells and CTLs elicited during infection was indistinguishable from that of wild-type cells. Hence, CatC is involved in limiting MCMV replication; however, this effect is independent of its role in promoting effector cytolytic activity. These data provide evidence for a novel and unexpected role of CatC during viral infection.  相似文献   
123.
Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20(th) century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism.  相似文献   
124.
Hydric soil development of riparian wetlands is primarily influenced by the hydrologic connection between the floodplains and the stream channel. Often, the goal of riparian restoration is to revitalize this connectivity through a restructuring of the stream channel and the floodplain; however, the effects of this restructuring on the physical and spatial characteristics of soil properties are rarely considered. The objective of this study was to quantify the impacts of restoration efforts on the spatial characteristics of soil properties by means of a pre‐ and post‐restoration comparison. We determined that the spatial patterns of soil organic matter (SOM) and exchangeable phosphorus (Pex) appeared less variable in the years following restoration than in the years before restoration. Mean SOM significantly decreased after restoration, whereas mean Pex significantly increased. The spatial characteristics and mean concentrations of NO2–NO3 did not differ much between sampling dates. The loss of this spatial patterning in SOM and Pex and the decrease in SOM pools may represent negative impacts of restoration on important ecosystem characteristics. This study demonstrates that soil properties and spatial patterns can be negatively affected by restoration activities potentially hindering ecosystem development and function.  相似文献   
125.
126.
The extracellular secreted mucus and the cell surface glycocalyx prevent infection by the vast numbers of microorganisms that live in the healthy gut. Mucin glycoproteins are the major component of these barriers. In this Review, we describe the components of the secreted and cell surface mucosal barriers and the evidence that they form an effective barricade against potential pathogens. However, successful enteric pathogens have evolved strategies to circumvent these barriers. We discuss the interactions between enteric pathogens and mucins, and the mechanisms that these pathogens use to disrupt and avoid mucosal barriers. In addition, we describe dynamic alterations in the mucin barrier that are driven by host innate and adaptive immune responses to infection.  相似文献   
127.
Pseudomonas aeruginosa is especially adept at colonizing the airways of individuals afflicted with the autosomal recessive disease cystic fibrosis (CF). CF patients suffer from chronic airway inflammation, which contributes to lung deterioration. Once established in the airways, P. aeruginosa continuously adapts to the changing environment, in part through acquisition of beneficial mutations via a process termed pathoadaptation. MutS and DinB are proposed to play opposing roles in P. aeruginosa pathoadaptation: MutS acts in replication-coupled mismatch repair, which acts to limit spontaneous mutations; in contrast, DinB (DNA polymerase IV) catalyzes error-prone bypass of DNA lesions, contributing to mutations. As part of an ongoing effort to understand mechanisms underlying P. aeruginosa pathoadaptation, we characterized hydrogen peroxide (H(2)O(2))-induced phenotypes of isogenic P. aeruginosa strains bearing different combinations of mutS and dinB alleles. Our results demonstrate an unexpected epistatic relationship between mutS and dinB with respect to H(2)O(2)-induced cell killing involving error-prone repair and/or tolerance of oxidized DNA lesions. In striking contrast to these error-prone roles, both MutS and DinB played largely accurate roles in coping with DNA lesions induced by ultraviolet light, mitomycin C, or 4-nitroquinilone 1-oxide. Models discussing roles for MutS and DinB functionality in DNA damage-induced mutagenesis, particularly during CF airway colonization and subsequent P. aeruginosa pathoadaptation are discussed.  相似文献   
128.
The use of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry on intact cell microorganisms, Intact Cell MALDI (ICM), has been shown by numerous workers to yield effective species level identification. Early work highlighted the significant effect that variation in culture media, incubation conditions and length of incubation had on the spectra produced. Therefore, in order to achieve reliable and reproducible species level identification and sub-typing of microorganisms from ICM fingerprints, it has been essential to develop standardised methods. For methicillin-resistant Staphylococcus aureus (MRSA), a major nosocomial pathogen, we have developed such a standardised method. In this paper we present the experimental parameters, namely, the incubation period, the number of passages required from lyophilised or stored isolates, the method of deposition of the bacterial cells, the concentration of matrix solution, the drying time of bacterial cells prior to the addition of the matrix solution, the time between preparation of the bacterial/matrix sample and analysis and the MALDI pulsed extraction setting, which were considered during the development of defined methods.  相似文献   
129.
Fibropapillomatosis (FP) of marine turtles is an emerging neoplastic disease associated with infection by a novel turtle herpesvirus, fibropapilloma-associated turtle herpesvirus (FPTHV). This report presents 23 kb of the genome of an FPTHV infecting a Hawaiian green turtle (Chelonia mydas). By sequence homology, the open reading frames in this contig correspond to herpes simplex virus genes UL23 through UL36. The order, orientation, and homology of these putative genes indicate that FPTHV is a member of the Alphaherpesvirinae. The UL27-, UL30-, and UL34-homologous open reading frames from FPTHVs infecting nine FP-affected marine turtles from seven geographic areas and three turtle species (C. mydas, Caretta caretta, and Lepidochelys olivacea) were compared. A high degree of nucleotide sequence conservation was found among these virus variants. However, geographic variations were also found: the FPTHVs examined here form four groups, corresponding to the Atlantic Ocean, West pacific, mid-Pacific, and east Pacific. Our results indicate that FPTHV was established in marine turtle populations prior to the emergence of FP as it is currently known.  相似文献   
130.
The structure and function of the outer coat protein VP9 of Banna virus   总被引:4,自引:0,他引:4  
Banna virus (BAV: genus Seadornavirus, family Reoviridae) has a double-shelled morphology similar to rotavirus and bluetongue virus. The structure of BAV outer-capsid protein VP9 was determined by X-ray crystallography at 2.6 A resolution, revealing a trimeric molecule, held together by an N-terminal helical bundle, reminiscent of coiled-coil structures found in fusion-active proteins such as HIV gp41. The major domain of VP9 contains stacked beta sheets with marked structural similarities to the receptor binding protein VP8 of rotavirus. Anti-VP9 antibodies neutralize viral infectivity, and, remarkably, pretreatment of cells with trimeric VP9 increased viral infectivity, indicating that VP9 is involved in virus attachment to cell surface and subsequent internalization. Sequence similarities were also detected between BAV VP10 and VP5 portion of rotavirus VP4, suggesting that the receptor binding and internalization apparatus, which is a single gene product activated by proteoloysis in rotavirus, is the product of two separate genome segments in BAV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号