首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   9篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   12篇
  2013年   16篇
  2012年   22篇
  2011年   13篇
  2010年   8篇
  2009年   5篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1983年   1篇
排序方式: 共有169条查询结果,搜索用时 281 毫秒
61.
Change in specificity, caused by the mutations at P1 site, of the serine protease inhibitors of different families is reported in the literature, but Kunitz (STI) family inhibitors are almost unexplored in this regard. In this paper, we present the crystal structure of a P1 variant of winged bean chymotrypsin inhibitor (WCI) belonging to Kunitz (STI) family, supplemented by biochemical, phylogenetic and docking studies on the mutant. A single mutation (Leu  Arg) at P1 converted WCI to a strong inhibitor of trypsin with an association constant of 4.8 × 1010 M?1 which is comparable to other potent trypsin inhibitors of the family. The crystal structure (2.15 Å) of this mutant (L65R) shows that its reactive site loop conformation deviates from that of WCI and adopts a structure similar to that of Erythrina caffra trypsin inhibitor (ETI) belonging to the same family. Mutation induced structural changes have also been propagated in a concerted manner to the neighboring conserved scaffolding residue Asn14, such that the side chain of this residue took an orientation similar to that of ETI and optimized the hydrogen bonds with the loop residues. While docking studies provide information about the accommodation of non-specific residues in the active site groove of trypsin, the basis of the directional alteration of the reactive site loop conformation has been understood through sequence analysis and related phylogenetic studies.  相似文献   
62.
Macroautophagy has been implicated as a mechanism of cell death. However, the relationship between this degradative pathway and cell death is unclear as macroautophagy has been shown recently to protect against apoptosis. To better define the interplay between these two critical cellular processes, we determined whether inhibition of macroautophagy could have both pro-apoptotic and anti-apoptotic effects in the same cell. Embryonic fibroblasts from mice with a knock-out of the essential macroautophagy gene atg5 were treated with activators of the extrinsic and intrinsic death pathways. Loss of macroautophagy sensitized these cells to caspase-dependent apoptosis from the death receptor ligands Fas and tumor necrosis factor-alpha (TNF-alpha). Atg5-/- mouse embryonic fibroblasts had increased activation of the mitochondrial death pathway in response to Fas/TNF-alpha in concert with decreased ATP levels. Fas/TNF-alpha treatment failed to up-regulate macroautophagy, and in fact, decreased activity at late time points. In contrast to their sensitization to Fas/TNF-alpha, Atg5-/- cells were resistant to death from menadione and UV light. In the absence of macroautophagy, an up-regulation of chaperone-mediated autophagy induced resistance to these stressors. These results demonstrate that inhibition of macroautophagy can promote or prevent apoptosis in the same cell and that the response is governed by the nature of the death stimulus and compensatory changes in other forms of autophagy. Experimental findings that an inhibition of macroautophagy blocks apoptosis do not prove that autophagy mediates cell death as this effect may result from the protective up-regulation of other autophagic pathways such as chaperone-mediated autophagy.  相似文献   
63.
Chaperone-mediated autophagy (CMA) is a selective type of autophagy by which specific cytosolic proteins are sent to lysosomes for degradation. Substrate proteins bind to the lysosomal membrane through the lysosome-associated membrane protein type 2A (LAMP-2A), one of the three splice variants of the lamp2 gene, and this binding is limiting for their degradation via CMA. However, the mechanisms of substrate binding and uptake remain unknown. We report here that LAMP-2A organizes at the lysosomal membrane into protein complexes of different sizes. The assembly and disassembly of these complexes are a very dynamic process directly related to CMA activity. Substrate proteins only bind to monomeric LAMP-2A, while the efficient translocation of substrates requires the formation of a particular high-molecular-weight LAMP-2A complex. The two major chaperones related to CMA, hsc70 and hsp90, play critical roles in the functional dynamics of the LAMP-2A complexes at the lysosomal membrane. Thus, we have identified a novel function for hsc70 in the disassembly of LAMP-2A from these complexes, whereas the presence of lysosome-associated hsp90 is essential to preserve the stability of LAMP-2A at the lysosomal membrane.  相似文献   
64.
Pihur V  Datta S  Datta S 《Genomics》2008,92(6):400-403
Discovering genes involved in multiple types of cancers is of significant therapeutic importance. We show that collective evidence for such genes can be obtained via a form of meta-analysis that aggregates the results (rankings and p values) from various cancer-specific microarray experiments. This method is illustrated by a combined analysis of 20 microarray experiments. In the aggregated list of top-50 genes, 36 of them have been implicated in cancer (often multiple cancers) genesis in past studies, which also suggests that this list may contain some novel cancer genes that may deserve further scrutiny in the future.  相似文献   
65.
MOTIVATION: Gene association/interaction networks provide vast amounts of information about essential processes inside the cell. A complete picture of gene-gene associations/interactions would open new horizons for biologists, ranging from pure appreciation to successful manipulation of biological pathways for therapeutic purposes. Therefore, identification of important biological complexes whose members (genes and their products proteins) interact with each other is of prime importance. Numerous experimental methods exist but, for the most part, they are costly and labor intensive. Computational techniques, such as the one proposed in this work, provide a quick 'budget' solution that can be used as a screening tool before more expensive techniques are attempted. Here, we introduce a novel computational method based on the partial least squares (PLS) regression technique for reconstruction of genetic networks from microarray data. RESULTS: The proposed PLS method is shown to be an effective screening procedure for the detection of gene-gene interactions from microarray data. Both simulated and real microarray experiments show that the PLS-based approach is superior to its competitors both in terms of performance and applicability. AVAILABILITY: R code is available from the supplementary web-site whose URL is given below.  相似文献   
66.
Molecular genetics of schizophrenia: past, present and future   总被引:3,自引:0,他引:3  
Schizophrenia is a severe neuropsychiatric disorder with a polygenic mode of inheritance which is also governed by non-genetic factors. Candidate genes identified on the basis of biochemical and pharmacological evidence are being tested for linkage and association studies. Neurotransmitters, especially dopamine and serotonin have been widely implicated in its etiology. Genome scan of all human chromosomes with closely spaced polymorphic markers is being used for linkage studies. The completion and availability of the first draft of Human Genome Sequence has provided a treasure-trove that can be utilized to gain insight into the so far inaccessible regions of the human genome. Significant technological advances for identification of single nucleotide polymorphisms (SNPs) and use of microarrays have further strengthened research methodologies for genetic analysis of complex traits. In this review, we summarize the evolution of schizophrenia genetics from the past to the present, current trends and future direction of research.  相似文献   
67.
The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.  相似文献   
68.
BackgroundTetanus, a vaccine-preventable disease, is still occurring in the elderly population of low- and middle-income countries with a high case-fatality rate. The objective of the study was to elucidate the factors associated with in-hospital mortality of tetanus in Bangladesh.MethodsThis prospective observational study, conducted in two specialized infectious disease hospitals, conveniently selected adult tetanus patients (≥18 years) for inclusion. Data were collected through a preformed structured questionnaire. Kaplan Meier survival analysis and univariate and multivariable Cox regression analysis were carried out to assess factors associated with in-hospital mortality among patients. All analysis was done using Stata (version 16) and SPSS (version 26).ResultsA total of 61 tetanus cases were included, and the overall in-hospital mortality rate was 34.4% (n = 21). Patients had an average age of 46.49 ±15.65 years (SD), and the majority were male (96.7%), farmers (57.4%), and came from rural areas (93.4%). Survival analysis revealed that the probability of death was significantly higher among patients having an age of ≥ 40 years, incubation time of ≤12 days, onset time of ≤ 4 days, and having complication(s). However, on multivariable Cox regression analysis, age (adjusted hazard ratio [aHR] 4.03, 95% Confidence Interval [CI] 1.07–15.17, p = 0.039) and onset time (≤4 days) (aHR 3.33; 95% CI 1.05–10.57, p = 0.041) came as significant predictors of in-hospital mortality after adjusting for incubation period and complications.ConclusionOlder age and short onset time are the two most important determinants of in-hospital mortality of tetanus patients. Hence, these patients require enhanced emphasis and care.  相似文献   
69.
Defects in Complex I assembly is one of the emerging underlying causes of severe mitochondrial disorders. The assembly of Complex I has been difficult to understand due to its large size, dual genetic control and the number of proteins involved. Mutations in Complex I subunits as well as assembly factors have been reported to hinder its assembly and give rise to a range of mitochondria disorders. In this review, we summarize the recent progress made in understanding the Complex I assembly pathway. In particularly, we focus on the known as well as novel assembly factors and their role in assembly of Complex I and human disease.  相似文献   
70.
Spectrofluorimetric and spectrophotometric studies were done to understand the binding of hematoporphyrin, a photosensitizer to horseradish peroxidase (EC1.11.1.7). The binding affinity constant (K) decreases as the state of aggregation of the porphyrin increases, while the number of binding sites (approximately 1) remains unchanged. The interaction appears to be mostly hydrophobic, entropy-driven and endothermic process. Hematoporphyrin potentiates horseradish peroxidase-catalyzed H2O2-mediated NADH oxidation, probably by porphyrin-influenced removal of superoxide radicals, which are generated in the system. Conformational change of the protein due to its interaction with porphyrin may be associated with potentiation of the catalytic activity of the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号