首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   8篇
  2022年   3篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   8篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有83条查询结果,搜索用时 584 毫秒
31.
In nucleotide excision repair (NER), the xeroderma pigmentosum D helicase (XPD) scans DNA searching for bulky lesions, stalls when encountering such damage to verify its presence, and allows repair to proceed. Structural studies have shown XPD bound to its single-stranded DNA substrate, but molecular and dynamic characterization of how XPD translocates on undamaged DNA and how it stalls to verify lesions remains poorly understood. Here, we have performed extensive all-atom MD simulations of human XPD bound to undamaged and damaged ssDNA, containing a mutagenic pyrimidine (6−4) pyrimidone UV photoproduct (6−4PP), near the XPD pore entrance. We characterize how XPD responds to the presence of the DNA lesion, delineating the atomistic-scale mechanism that it utilizes to discriminate between damaged and undamaged nucleotides. We identify key amino acid residues, including FeS residues R112, R196, H135, K128, Arch residues E377 and R380, and ATPase lobe 1 residues 215−221, that are involved in damage verification and show how movements of Arch and ATPase lobe 1 domains relative to the FeS domain modulate these interactions. These structural and dynamic molecular depictions of XPD helicase activity with unmodified DNA and its inhibition by the lesion elucidate how the lesion is verified by inducing XPD stalling.  相似文献   
32.
Human neutrophil elastase splits IgG into Fc, Fabc, and Fab fragments. The Fc and Fabc fragments bind with high affinity (KD 2.1 and 2.5 nM respectively) to a small number of binding sites (1175 and 1370 sites/cell respectively) on untreated human polymorphonuclear leukocytes. Molecular mass determination of the binding site by crosslinking of Fc fragments to the neutrophils followed by SDS electrophoresis yields one band corresponding to a molecular mass of 67 kDa for the binding site. Incubation of neutrophils with rIFN-gamma (50 ng/ml, 18 h, 37 degrees C) enhances the expression of binding sites by about 6 fold to about 14,500 sites/cell, while the binding affinity and the molecular mass of the ligand receptor complex remain constant. By comparison with known affinities of leukocyte Fc receptors it is concluded that IgG fragments bind to the high affinity FcRI receptor of human neutrophils.  相似文献   
33.
Reactive oxygen species present in the cell generate DNA damage. One of the major oxidation products of guanine in DNA, 8-oxo-7,8-dihydroguanine, formed by loss of two electrons, is among the most extensively studied base lesions. The further removal of two electrons from this product can yield spiroiminodihydantoin (Sp) R and S stereoisomers. Both in vitro and in vivo experiments have shown that the Sp stereoisomers are highly mutagenic, causing G --> T and G --> C transversions. Hence, they are of interest as examples of endogenous DNA damage that may initiate cancer. To interpret the mutagenic properties of the Sp lesions, an understanding of their structural properties is needed. To elucidate these structural effects, we have carried out computational investigations at the level of the Sp-modified base and nucleoside. At the base level, quantum mechanical geometry optimization studies have revealed exact mirror image symmetry of the R and S stereoisomers, with a near-perpendicular geometry of the two rings. At the nucleoside level, an extensive survey of the potential energy surface by molecular mechanics calculations using AMBER has provided three-dimensional potential energy maps. These maps reveal that the range and flexibility of the glycosidic torsion angles are significantly more restricted in both stereoisomeric adducts than in unmodified 2'-deoxyguanosine. The structural and energetic results suggest that the unusual geometric, steric, and hydrogen bonding properties of these lesions underlie their mutagenicity. In addition, stereoisomer-specific differences indicate the possibility that their processing by cellular replication and repair enzymes may be differentially affected by their absolute configuration.  相似文献   
34.
To link conformational transitions noted for DNA polymerases with kinetic results describing catalytic efficiency and fidelity, we investigate the role of key DNA polymerase beta residues on subdomain motion through simulations of five single-residue mutants: Arg-283-Ala, Tyr-271-Ala, Asp-276-Val, Arg-258-Lys, and Arg-258-Ala. Since a movement toward a closed state was only observed for R258A, we suggest that Arg(258) is crucial in modulating motion preceding chemistry. Analyses of protein/DNA interactions in the mutant active site indicate distinctive hydrogen bonding and van der Waals patterns arising from compensatory structural adjustments. By comparing closed mutant complexes with the wild-type enzyme, we interpret experimentally derived nucleotide binding affinities in molecular terms: R283A (decreased), Y271A (increased), D276V (increased), and R258A (decreased). Thus, compensatory interactions (e.g., in Y271A with adjacent residues Phe(272), Asn(279), and Arg(283)) increase the overall binding affinity for the incoming nucleotide although direct interactions may decrease. Together with energetic analyses, we predict that R258G might increase the rate of nucleotide insertion and maintain enzyme fidelity as R258A; D276L might increase the nucleotide binding affinity more than D276V; and R283A/K280A might decrease the nucleotide binding affinity and increase misinsertion more than R283A. The combined observations regarding key roles of specific residues (e.g., Arg(258)) and compensatory interactions echo the dual nature of polymerase active site, namely versatility (to accommodate various basepairs) and specificity (for preserving fidelity) and underscore an organized but pliant active site essential to enzyme function.  相似文献   
35.
The virulence antigen (LcrV) of pathogenic yersiniae "silences" macrophages against stimulation with the TLR2-agonist zymosan A in a CD14/TLR2-dependent fashion via IL-10 induction. This pathogenically important "silencing" resembles TLR tolerance phenomena; in these, pre-exposure to a primary tolerizing TLR-agonist renders macrophages unresponsive to stimulation with a secondary challenging TLR-agonist which may involve either the same (TLR homotolerance) or a different TLR (TLR heterotolerance) as the primary TLR-agonist. Here, we show that rLcrV induces TLR homo- and heterotolerance against TLR2- or TLR4-agonists both in human and murine macrophages, respectively. The underlying mechanism of LcrV-induced tolerance is most likely not due to changes in TLR2- or TLR4 expression, but involves LcrV-mediated IL-10 production, since LcrV-induced TLR homo- and heterotolerance is highly impaired in IL-10(-/-) macrophages. Moreover, the involvement of IL-10 in TLR tolerance induction seems to be a more general phenomenon as shown by experiments using different TLR-agonists in IL-10(-/-) macrophages. Since LcrV acts as a secreted protein upon macrophages without requiring direct cell contact, as shown in transwell assays, we propose that yersiniae exploit IL-10-involving TLR tolerance mechanisms by the virulence factor LcrV.  相似文献   
36.
Human DNA polymerase ι is a lesion bypass polymerase of the Y family, capable of incorporating nucleotides opposite a variety of lesions in both near error-free and error-prone bypass. With undamaged templating purines polymerase ι normally favors Hoogsteen base pairing. Polymerase ι can incorporate nucleotides opposite a benzo[a]pyrene-derived adenine lesion (dA*); while mainly error-free, the identity of misincorporated bases is influenced by local sequence context. We performed molecular modeling and molecular dynamics simulations to elucidate the structural basis for lesion bypass. Our results suggest that hydrogen bonds between the benzo[a]pyrenyl moiety and nearby bases limit the movement of the templating base to maintain the anti glycosidic bond conformation in the binary complex in a 5′-CAGA*TT-3′ sequence. This facilitates correct incorporation of dT via a Watson−Crick pair. In a 5′-TTTA*GA-3′ sequence the lesion does not form these hydrogen bonds, permitting dA* to rotate around the glycosidic bond to syn and incorporate dT via a Hoogsteen pair. With syn dA*, there is also an opportunity for increased misincorporation of dGTP. These results expand our understanding of the versatility and flexibility of polymerase ι and its lesion bypass functions in humans.  相似文献   
37.
A common animal model of chemical hepatocarcinogenesis was used to demonstrate the potential identification of carcinogenicity related protein signatures/biomarkers. Therefore, an animal study in which rats were treated with the known liver carcinogen N-nitrosomorpholine (NNM) or the corresponding vehicle was evaluated. Histopathological investigation as well as SELDI-TOF-MS analysis was performed. SELDI-TOF-MS is an affinity-based mass spectrometry method in which subsets of proteins from biological samples are selectively adsorbed to a chemically modified surface. The proteins are subsequently analyzed with respect to their mass-charge ratios (m/z) by a time of flight (TOF) mass spectrometry (MS) approach. As data preprocessing of SELDI-TOF-MS spectra is essential, baseline correction, normalization, peak detection, and alignment of raw spectra were performed using either the Ciphergen ProteinChip Software 3.1 or functions implemented in the library PROcess of the BioConductor Project. Baseline correction and normalization algorithms of both tools lead to comparable results, whereas results after peak detection and alignment steps differed. Variability between technical and biological replicates was investigated. A linear mixed model with factors experimental group and time point was applied for each protein peak, taking into account the different correlation structure of technical and biological replicates. Alternatively, only median intensity values of technical replicates were used. Results of both models were similar and correlated well with those of the histopathological evaluation of the study. In conclusion, statistical analyses lead to comparable results, whereas parameter settings for preprocessing proved to be crucial.  相似文献   
38.
Abstract

Energy minimized structures of DNA modified by the aromatic amines 2-acetylaminofluorene (AAF) and 2-aminofuorene (AF), for which no experimental atomic resolution data exist, are presented. These have been computed with a new molecular mechanics program specifically designed to define distortions imposed by such adducts, and employing a rational strategy for searching the conformation space of a DNA molecule with covalently linked carcinogen. In alternating G-C sequences, the AAF adduct prefers to reside at the exterior of an undeformed Z-helix. It can also induce base displacement with attendant denaturation and helix bending in sequences that disfavor the Z form, but undeformed B helices are excluded. The AF adduct, by contrast, prefers the major groove of an unperturbed B-helix, but can also induce carcinogen-base stacking in single stranded regions of the DNA, such as at the replication fork. The different biological properties of these two adducts may be related to their distinct conformational features.  相似文献   
39.
In the translational process of developing innovative therapies for DMD (Duchenne muscular dystrophy), the last preclinical validation step is often carried out in the most relevant animal model of this human disease, namely the GRMD (Golden Retriever muscular dystrophy) dog. The disease in GRMD dogs mimics human DMD in many aspects, including the inter-individual heterogeneity. This last point can be seen as a drawback for an animal model but is inherently related to the disease in GRMD dogs closely resembling that of individuals with DMD. In order to improve the management of this inter-individual heterogeneity, we have screened a combination of biomarkers in sixty-one 2-month-old GRMD dogs at the onset of the disease and a posteriori we addressed their predictive value on the severity of the disease. Three non-invasive biomarkers obtained at early stages of the disease were found to be highly predictive for the loss of ambulation before 6 months of age. An elevation in the number of circulating CD4+CD49dhi T cells and a decreased stride frequency resulting in a reduced spontaneous speed were found to be strongly associated with the severe clinical form of the disease. These factors can be used as predictive tests to screen dogs to separate them into groups with slow or fast disease progression before their inclusion into a therapeutic preclinical trial, and therefore improve the reliability and translational value of the trials carried out on this invaluable large animal model. These same biomarkers have also been described to be predictive for the time to loss of ambulation in boys with DMD, strengthening the relevance of GRMD dogs as preclinical models of this devastating muscle disease.KEY WORDS: GRMD, DMD, Dystrophin, Dog, Predictive biomarker, Lymphocyte, CD49d, Gait analysis, Accelerometry  相似文献   
40.
Nucleotide excision repair (NER) is an important prokaryotic and eukaryotic defense mechanism that removes a large variety of structurally distinct lesions in cellular DNA. While the proteins involved are completely different, the mode of action of these two repair systems is similar, involving a cut-and-patch mechanism in which an oligonucleotide sequence containing the lesion is excised. The prokaryotic and eukaryotic NER damage-recognition factors have common structural features of β-hairpin intrusion between the two DNA strands at the site of the lesion. In the present study, we explored the hypothesis that this common β-hairpin intrusion motif is mirrored in parallel NER incision efficiencies in the two systems. We have utilized human HeLa cell extracts and the prokaryotic UvrABC proteins to determine their relative NER incision efficiencies. We report here comparisons of relative NER efficiencies with a set of stereoisomeric DNA lesions derived from metabolites of benzo[a]pyrene and equine estrogens in different sequence contexts, utilizing 21 samples. We found a general qualitative trend toward similar relative NER incision efficiencies for ~65% of these substrates; the other cases deviate mostly by ~30% or less from a perfect correlation, although several more distant outliers are also evident. This resemblance is consistent with the hypothesis that lesion recognition through β-hairpin insertion, a common feature of the two systems, is facilitated by local thermodynamic destabilization induced by the lesions in both cases. In the case of the UvrABC system, varying the nature of the UvrC endonuclease, while maintaining the same UvrA/B proteins, can markedly affect the relative incision efficiencies. These observations suggest that, in addition to recognition involving the initial modified duplexes, downstream events involving UvrC can also play a role in distinguishing and processing different lesions in prokaryotic NER.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号