首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   17篇
  120篇
  2022年   3篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1976年   2篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
排序方式: 共有120条查询结果,搜索用时 11 毫秒
71.
72.
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms.  相似文献   
73.
5-Guanidino-4-nitroimidazole (NI), derived from guanine oxidation by reactive oxygen and nitrogen species, contains an unusual flexible ring-opened structure, with nitro and guanidino groups which possess multiple hydrogen bonding capabilities. In vitro primer extension experiments with bacterial and mammalian polymerases show that NI incorporates C as well as A and G opposite the lesion, depending on the polymerase. To elucidate structural and thermodynamic properties of the mutagenic NI lesion, we have investigated the structure of the modified base itself and the NI-containing nucleoside with high-level quantum mechanical calculations and have employed molecular modeling and molecular dynamics simulations in solution for the lesion in B-DNA duplexes, with four partner bases opposite the NI. Our results show that NI adopts a planar structure at the damaged base level. However, in the nucleoside and in DNA duplexes, steric hindrance between the guanidino group and its linked sugar causes NI to be nonplanar. The NI lesion can adopt both syn and anti conformations on the DNA duplex level, with the guanidino group positioned in the DNA major and minor grooves, respectively; the specific preference depends on the partner base. On the basis of hydrogen bonding and stacking interactions, groove dimensions, and bending, we find that the least distorted NI-modified duplex contains partner C, consistent with observed incorporation of C opposite NI. However, hydrogen bonding interactions between NI and partner G or A are also found, which would be compatible with the observed mismatches.  相似文献   
74.
Bulky carcinogen-DNA adducts commonly cause replicative polymerases to stall, leading to a switch to bypass polymerases. We have investigated nucleotide incorporation opposite the major adduct of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the DinB family polymerase, Dpo4, using molecular modeling and molecular dynamics (MD) simulations. PhIP, the most prevalent heterocyclic aromatic amine formed by cooking of proteinaceous food, is mutagenic in mammalian cells and is implicated in mammary and colon tumors. Our results show that the dG-C8-PhIP adduct can be accommodated in the spacious major groove Dpo4 open pocket, with Dpo4 capable of incorporating dCTP, dTTP or dATP opposite the adduct reasonably well. However, the PhIP ring system on the minor groove side would seriously disturb the active site, regardless of the presence and identity of dNTP. Furthermore, the simulations indicate that dATP and dTTP are better incorporated in the damaged system than in their respective mismatched but unmodified controls, suggesting that the PhIP adduct enhances incorporation of these mismatches. Finally, bulky C8-dG adducts, situated in the major groove, are likely to impede translocation in this polymerase (Rechkoblit et al. (2006), PLoS Biol., 4, e11). However, N2-dG adducts, which can reside on the minor groove side, appear to cause less hindrance when in this position.  相似文献   
75.
76.
XPC/Rad4 initiates eukaryotic nucleotide excision repair on structurally diverse helix-destabilizing/distorting DNA lesions by selectively ‘opening’ these sites while rapidly diffusing along undamaged DNA. Previous structural studies showed that Rad4, when tethered to DNA, could also open undamaged DNA, suggesting a ‘kinetic gating’ mechanism whereby lesion discrimination relied on efficient opening versus diffusion. However, solution studies in support of such a mechanism were lacking and how ‘opening’ is brought about remained unclear. Here, we present crystal structures and fluorescence-based conformational analyses on tethered complexes, showing that Rad4 can indeed ‘open’ undamaged DNA in solution and that such ‘opening’ can largely occur without one or the other of the β-hairpin motifs in the BHD2 or BHD3 domains. Notably, the Rad4-bound ‘open’ DNA adopts multiple conformations in solution notwithstanding the DNA’s original structure or the β-hairpins. Molecular dynamics simulations reveal compensatory roles of the β-hairpins, which may render robustness in dealing with and opening diverse lesions. Our study showcases how fluorescence-based studies can be used to obtain information complementary to ensemble structural studies. The tethering-facilitated DNA ‘opening’ of undamaged sites and the dynamic nature of ‘open’ DNA may shed light on how the protein functions within and beyond nucleotide excision repair in cells.  相似文献   
77.
The non-steroidal anti-estrogen tamoxifen [TAM] has been in clinical use over the last two decades as a potent adjunct chemotherapeutic agent for treatment of breast cancer. It has also been given prophylactically to women with a strong family history of breast cancer. However, tamoxifen treatment has also been associated with increased endometrial cancer, possibly resulting from the reaction of metabolically activated tamoxifen derivatives with cellular DNA. Such DNA adducts can be mutagenic and the activities of isomeric adducts may be conformation-dependent. We therefore investigated the high resolution NMR solution conformation of one covalent adduct (cis-isomer, S-epimer of [TAM]G) formed from the reaction of tamoxifen [TAM] to N(2)-of guanine in the d(C-[TAM]G-C).d(G-C-G) sequence context at the 11-mer oligonucleotide duplex level. Our NMR results establish that the S-cis [TAM]G lesion is accomodated within a widened minor groove without disruption of the Watson-Crick [TAM]G. C and flanking Watson-Crick G.C base-pairs. The helix axis of the bound DNA oligomer is bent by about 30 degrees and is directed away from the minor groove adduct site. The presence of such a bulky [TAM]G adduct with components of the TAM residue on both the 5'- and the 3'-side of the modified base could compromise the fidelity of the minor groove polymerase scanning machinery.  相似文献   
78.
We investigate the influence of base sequence context on the conformations of the 10S (+)- and 10R (-)-trans-anti-[BP]-N(6)-dA adducts through molecular dynamics (MD) simulations with free energy calculations, and relate the structural findings to results of nucleotide excision repair (NER) assays in human cell extracts. In previous studies, these adducts were studied in the CA*A sequence context, and here we report results for the CA*C sequence. Our simulations indicate that the base sequence context affects the syn-anti conformational equilibrium in the 10S (+) adduct by modulating the barrier heights between these states on the energy surface, with a higher barrier in the CA*C case. Our nucleotide excision repair assay finds greater NER susceptibilities in the 10S (+) adduct for the CA*C sequence context. A structural rationale ties together these results. A sequence specific hydrogen bond, accompanied by a significantly increased roll and consequent bending in the 10S (+) adduct, has been found in our simulations for the CA*C sequence, which could account for the enhanced nucleotide excision repair as well as the syn-anti equilibrium difference we observe in this isomer and sequence. Such sequence specific differential repair could contribute to the existence of mutational hotspots and thereby contribute to the complexity of cancer initiation.  相似文献   
79.
Summary A sandwich enzyme immunoassay was developed to detect circulating immune complexes containing carcinoembryonic antigen (CEA) and immunoglobulin (Ig) G, IgA, or IgM using a nitrocellulose-bound anti-CEA antibody as the solid phase reagent. Elevated levels of CEA-containing circulating immune complexes (CEA-IC) were found in 15.4% of 117 sera from patients with colorectal cancer in a postsurgery follow-up study. Also in 24.5% of 102 sera from patients with breast cancer in different states of disease CEA-IC were found. The predominant Ig determined in CEA-IC of colorectal cancer patients was IgA, followed by IgG and IgM, whereas IgG and IgM were the most frequent Igs in CEA-IC of breast cancer patients. Elevated CEA levels were found in 12.0% of the colorectal cancer patients and in 25.4% of sera from breast cancer patients. No significance for the coincidence of elevated CEA levels and CEA-IC was recorded in all patients sera tested. In sera of patients with disease recurrence, however, both parameters were shown to be elevated (CEA 80.7% and CEA-IC 42.3%). The data presented indicate the detection of CEA-IC as an additional parameter for the identification of patients at increased risk for disease recurrence.  相似文献   
80.
Minor-groove binding models for acetylaminofluorene modified DNA   总被引:2,自引:0,他引:2  
Minimized potential energy calculations have been employed to locate and evaluate energetically a number of different models for DNA modified at carbon-8 of guanine by acetylaminofluorene (AAF). Three different duplex nonamer sequences were investigated. In addition to syn guanine models which have some denaturation and a Z-DNA model, we have found two new types of structures in which guanine remains syn and the AAF is placed in the minor groove of a B-DNA helix. One type features Hoogsteen base pairing between the modified guanine and protonated cytosine, with a sharply bent helix. The other (here termed the "wedge" model because the aromatic amine is wedged into the minor groove) maintains a single hydrogen bond between O6 of the modified guanine and N3 of protonated cytosine, with much less deformation of the helix, and close Van der Waals contacts between the AAF and the walls of the minor groove. Both types of structures (as well as the related forms produced by deprotonation of cytosine) are energetically important in all three sequences examined. The wedge-type model, which is most favored except in alternating G-C sequences, has been previously observed in a combined NMR and computational characterization of an aminofluorene (AF) modified guanine opposite adenine in a DNA duplex undecamer (D. Norman, P. Abuaf, B.E. Hingerty, D. Live, D. Grunberger, S. Broyde and D.J. Patel, Biochemistry 28, 7462 (1989)).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号