首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   17篇
  120篇
  2022年   3篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1976年   2篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
51.
Abstract

Energy minimized structures of DNA modified by the aromatic amines 2-acetylaminofluorene (AAF) and 2-aminofuorene (AF), for which no experimental atomic resolution data exist, are presented. These have been computed with a new molecular mechanics program specifically designed to define distortions imposed by such adducts, and employing a rational strategy for searching the conformation space of a DNA molecule with covalently linked carcinogen. In alternating G-C sequences, the AAF adduct prefers to reside at the exterior of an undeformed Z-helix. It can also induce base displacement with attendant denaturation and helix bending in sequences that disfavor the Z form, but undeformed B helices are excluded. The AF adduct, by contrast, prefers the major groove of an unperturbed B-helix, but can also induce carcinogen-base stacking in single stranded regions of the DNA, such as at the replication fork. The different biological properties of these two adducts may be related to their distinct conformational features.  相似文献   
52.
Nucleotide excision repair (NER) is an important prokaryotic and eukaryotic defense mechanism that removes a large variety of structurally distinct lesions in cellular DNA. While the proteins involved are completely different, the mode of action of these two repair systems is similar, involving a cut-and-patch mechanism in which an oligonucleotide sequence containing the lesion is excised. The prokaryotic and eukaryotic NER damage-recognition factors have common structural features of β-hairpin intrusion between the two DNA strands at the site of the lesion. In the present study, we explored the hypothesis that this common β-hairpin intrusion motif is mirrored in parallel NER incision efficiencies in the two systems. We have utilized human HeLa cell extracts and the prokaryotic UvrABC proteins to determine their relative NER incision efficiencies. We report here comparisons of relative NER efficiencies with a set of stereoisomeric DNA lesions derived from metabolites of benzo[a]pyrene and equine estrogens in different sequence contexts, utilizing 21 samples. We found a general qualitative trend toward similar relative NER incision efficiencies for ~65% of these substrates; the other cases deviate mostly by ~30% or less from a perfect correlation, although several more distant outliers are also evident. This resemblance is consistent with the hypothesis that lesion recognition through β-hairpin insertion, a common feature of the two systems, is facilitated by local thermodynamic destabilization induced by the lesions in both cases. In the case of the UvrABC system, varying the nature of the UvrC endonuclease, while maintaining the same UvrA/B proteins, can markedly affect the relative incision efficiencies. These observations suggest that, in addition to recognition involving the initial modified duplexes, downstream events involving UvrC can also play a role in distinguishing and processing different lesions in prokaryotic NER.  相似文献   
53.

Background

Patients with type 2 diabetes are at an increased risk for disease and treatment related complications after the initial approach of oral mono/dual antidiabetic therapy has failed. Data from clinical practice with respect to this patient group are however scarce. Therefore we set up a registry in primary care documenting the course and outcomes of this patient group.

Methods

Diabetes Treatment Patterns and Goal Achievement in Primary Diabetes Care (DiaRegis) is a prospective, observational, German, multicenter registry including patients with type-2 diabetes in which oral mono/dual antidiabetic therapy has failed. Data were recorded at baseline and will be prospectively documented during visits at 6 ± 1, 12 ± 2 and 24 ± 2 months. The primary objective is to estimate the proportion of patients with at least 1 episode of severe hypoglycemia within one year.

Results

313 primary care offices included 4,048 patients between June 2009 and March 2010 of which 3,810 patients fulfilled the in- and exclusion criteria. 46.7% of patients were female; patients had a median diabetes duration of 5.5 years and most were obese with respect to BMI or waist circumference. HbA1c at baseline was 7.4%, fasting plasma glucose 142 mg/dl and postprandial glucose 185 mg/dl. Co-morbidity in this patient population was substantial with 17.9% having coronary artery disease, 14.4% peripheral neuropathy, 9.9% heart failure and 6.0% peripheral arterial disease. 68.6% of patients received oral monotherapy, 31.4% dual oral combination therapy. The most frequent antidiabetic agent used as monotherapy was metformin (79.0%) followed by sulfonylureas (14.8%).

Conclusions

DiaRegis is a large, prospective registry in primary diabetes care to document the course and outcomes of patients with type-2 diabetes in which the initial approach of oral mono/dual antidiabetic therapy has failed. The two year follow-up will allow for a prospective evaluation of these patients during multiple adjustments of therapy.  相似文献   
54.
Lesion processing: high-fidelity versus lesion-bypass DNA polymerases   总被引:3,自引:0,他引:3  
When a high-fidelity DNA polymerase encounters certain DNA-damage sites, its progress can be stalled and one or more lesion-bypass polymerases are recruited to transit the lesion. Here, we consider two representative types of lesions: (i) 7,8-dihydro-8-oxoguanine (8-oxoG), a small, highly prevalent lesion caused by oxidative damage; and (ii) bulky lesions derived from the environmental pre-carcinogen benzo[a]pyrene, in the high-fidelity DNA polymerase Bacillus fragment (BF) from Bacillus stearothermophilus and in the lesion-bypass DNA polymerase IV (Dpo4) from Sulfolobus solfataricus. The tight fit of the BF polymerase around the nascent base pair contrasts with the more spacious, solvent-exposed active site of Dpo4, and these differences in architecture result in distinctions in their respective functions: one-step versus stepwise polymerase translocation, mutagenic versus accurate bypass of 8-oxoG, and polymerase stalling versus mutagenic bypass at bulky benzo[a]pyrene-derived lesions.  相似文献   
55.
DNA bypass polymerases are utilized to transit bulky DNA lesions during replication, but the process frequently causes mutations. The structural origins of mutagenic versus high fidelity replication in lesion bypass is therefore of fundamental interest. As model systems, we investigated the molecular basis of the experimentally observed essentially faithful bypass of the guanine 10S-(+)-trans-anti-benzo[a]pyrene-N2-dG adduct by the Y-family human DNA polymerase κ, and the observed blockage of pol κ produced by the adenine 10S-(+)-trans-anti-benzo[a]pyrene-N2-dA adduct. These lesions are derived from the most tumorigenic metabolite of the ubiquitous cancer-causing pollutant, benzo[a]pyrene. We compare our results for the dG adduct with our earlier studies for the pol κ archaeal homolog Dpo4, which processes the same lesion in an error-prone manner. Molecular modeling, molecular mechanics calculations and molecular dynamics simulations were utilized. Our results show that the pol κ N-clasp is a key structural feature that accounts for the dA adduct blockage and the near-error-free bypass of the dG lesion. Absence of the N-clasp in Dpo4 explains the error-prone processing of the same lesion by this enzyme. Thus, our studies elucidate structure-function relationships in the fidelity of lesion bypass.  相似文献   
56.
Energy minimized structures of DNA modified by the aromatic amines 2-acetylaminofluorene (AAF) and 2-aminofluorene (AF), for which no experimental atomic resolution data exist, are presented. These have been computed with a new molecular mechanics program specifically designed to define distortions imposed by such adducts, and employing a rational strategy for searching the conformation space of a DNA molecule with covalently linked carcinogen. In alternating G-C sequences, the AAF adduct prefers to reside at the exterior of an undeformed Z-helix. It can also induce base displacement with attendant denaturation and helix bending in sequences that disfavor the Z form, but undeformed B helices are excluded. The AF adduct, by contrast, prefers the major groove of an unperturbed B-helix, but can also induce carcinogen-base stacking in single stranded regions of the DNA, such as at the replication fork. The different biological properties of these two adducts may be related to their distinct  相似文献   
57.
DNA replication fidelity is dictated by DNA polymerase enzymes and associated proteins. When the template DNA is damaged by a carcinogen, the fidelity of DNA replication is sometimes compromized, allowing mispaired bases to persist and be incorporated into the DNA, resulting in a mutation. A key question in chemical carcinogenesis by metabolically activated polycyclic aromatic hydrocarbons (PAHs) is the nature of the interactions between the carcinogen-damaged DNA and the replicating polymerase protein that permits the mutagenic misincorporation to occur. PAHs are environmental carcinogens that, upon metabolic activation, can react with DNA to form bulky covalently linked combination molecules known as carcinogen-DNA adducts. Benzo[a]pyrene (BP) is a common PAH found in a wide range of material ingested by humans, including cigarette smoke, car exhaust, broiled meats and fish, and as a contaminant in other foods. BP is metabolically activated into several highly reactive intermediates, including the highly tumorigenic (+)-anti-benzo[a]pyrene diol epoxide (BPDE). The primary product of the reaction of (+)-anti-BPDE with DNA, the (+)-trans-anti-benzo[a]pyrene diol epoxide-N(2)-dG ((+)-ta-[BP]G) adduct, is the most mutagenic BP adduct in mammalian systems and primarily causes G-to-T transversion mutations, resulting from the mismatch of adenine with BP-damaged guanine during replication. In order to elucidate the structural characteristics and interactions between the DNA polymerase and carcinogen-damaged DNA that allow a misincorporation opposite a DNA lesion, we have modeled a (+)-ta-[BP]G adduct at a primer-template junction within the replicative phage T7 DNA polymerase containing an incoming dATP, the nucleotide most commonly mismatched with the (+)-ta-[BP]G adduct during replication. A one nanosecond molecular dynamics simulation, using AMBER 5.0, has been carried out, and the resultant trajectory analyzed. The modeling and simulation have revealed that a (+)-ta-[BP]G:A mismatch can be accommodated stably in the active site so that the fidelity mechanisms of the polymerase are evaded and the polymerase accepts the incoming mutagenic base. In this structure, the modified guanine base is in the syn conformation, with the BP moiety positioned in the major groove, without interfering with the normal protein-DNA interactions required for faithful polymerase function. This structure is stabilized by a hydrogen bond between the modified guanine base and dATP partner, hydrophobic interactions between the BP moiety and the polymerase, a hydrogen bond between the modified guanine base and the polymerase, and several hydrogen bonds between the BP moiety and polymerase side-chains. Moreover, the G:A mismatch in this system closely resembles the size and shape of a normal Watson-Crick pair. These features reveal how the polymerase proofreading machinery may be evaded in the presence of a mutagenic carcinogen-damaged DNA, so that a mismatch can be accommodated readily, allowing bypass of the adduct by the replicative T7 DNA polymerase.  相似文献   
58.
High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands.  相似文献   
59.
The equine estrogens, equilin and equilenin, are major components of the drug Premarin, the most widely used formula for hormone replacement therapy. The derivative 4-hydroxyequilenin (4-OHEN), a major phase I metabolite of equilin and equilenin, autoxidizes to potent cytotoxic quinoids that can react in vitro and in vivo with cytosine and adenine in DNA. Unique cyclic adducts containing the same bicyclo[3.3.1]nonane-type connection ring are produced. Each base adduct has four stereoisomers. In order to elucidate the structural effects of A versus C modification, we have carried out molecular dynamics simulations of the stereoisomeric 4-OHEN-A adducts in DNA 11-mer duplexes and compared results with an earlier study of the C adducts (Ding, S., Shapiro, R., Geacintov, N.E., and Broyde, S. (2005) Equilenin-Derived DNA Adducts to Cytosine in DNA Duplexes: Structures and Thermodynamics, Biochemistry 44, 14565-14576). Similar stereochemical principles govern the orientations in DNA duplexes of the 4-OHEN-A adducts as for the analogous C adducts, with opposite orientations of the equilenin rings in stereoisomeric pairs of adducts characterized by near-mirror image circular dichroism (CD) spectra. However, the larger purine adducts have unique structural properties in the duplexes that distinguish their characteristics from those of the pyrimidine adducts. Significant differences are observed in terms of hydrogen bonding, stacking, bending, groove dimensions, solvent exposure, and hydrophobic interactions; also, each of the four stereoisomeric 4-OHEN-A adducts exhibit distinct structural features. Each base adduct and stereoisomer distorts the structure of the DNA duplex differently. These characteristics may manifest themselves in terms of differential nucleotide excision repair susceptibilities and mutagenic activities of the 4-OHEN-A and C adducts.  相似文献   
60.
Two-dimensional homonuclear and heteronuclear NMR and minimized potential energy calculations have been combined to define the structure of the antitumor agent mitomycin C (MC) cross-linked to deoxyguanosines on adjacent base pairs in the d(T1-A2-C3-G4-T5-A6).d(T7-A8-C9-G10-T11-A12) duplex. The majority of the mitomycin and nucleic acid protons in the MC-X 6-mer complex have been assigned from through-bond and through-space two-dimensional proton NMR studies in aqueous solution at 5 and 20 degrees C. The C3.G10 and G4.C9 base pairs are intact at the cross-link site and stack on each other in the complex. The amino protons of G4 and G10 resonate at 9.36 and 8.87 ppm and exhibit slow exchange with solvent H2O. The NMR experimental data establish that the mitomycin is cross-linked to the DNA through the amino groups of G4 and G10 and is positioned in the minor groove. The conformation of the cross-link site is defined by a set of NOEs between the mitomycin H1" and H2" protons and the nucleic acid imino and amino protons of G4 and the H2 proton of A8 and another set of NOEs between the mitomycin geminal H10" protons and the nucleic acid imino and amino protons of G10 and the H2 proton of A2. Several phosphorus resonances of the d(T-A-C-G-T-A) duplex shift dramatically on mitomycin cross-link formation and have been assigned from proton-detected phosphorus-proton two-dimensional correlation experiments. The proton chemical shifts and NOEs establish fraying at the ends of the d(T-A-C-G-T-A) duplex, and this feature is retained on mitomycin cross-link formation. The base-base and base-sugar NOEs exhibit similar patterns for symmetry-related steps on the two nucleic acid strands in the MC-X 6-mer complex, while the proton and phosphorus chemical shifts are dramatically perturbed at the G10-T11 step on cross-link formation. The NMR distance constraints have been included in minimized potential energy computations on the MC-X 6-mer complex. These computations were undertaken with the nonplanar five-membered ring of mitomycin in each of two pucker orientations. The resulting low-energy structures MX1 and MX2 have the mitomycin cross-linked in a widened minor groove with the chromophore ring system in the vicinity of the G10-T11 step on one of the two strands in the duplex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号