首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5280篇
  免费   438篇
  国内免费   2篇
  2023年   29篇
  2022年   45篇
  2021年   93篇
  2020年   58篇
  2019年   77篇
  2018年   88篇
  2017年   80篇
  2016年   148篇
  2015年   281篇
  2014年   301篇
  2013年   299篇
  2012年   470篇
  2011年   427篇
  2010年   277篇
  2009年   245篇
  2008年   316篇
  2007年   317篇
  2006年   289篇
  2005年   285篇
  2004年   268篇
  2003年   265篇
  2002年   247篇
  2001年   61篇
  2000年   30篇
  1999年   72篇
  1998年   71篇
  1997年   40篇
  1996年   40篇
  1995年   45篇
  1994年   51篇
  1993年   41篇
  1992年   37篇
  1991年   27篇
  1990年   20篇
  1989年   33篇
  1988年   20篇
  1987年   25篇
  1986年   12篇
  1985年   15篇
  1984年   20篇
  1983年   25篇
  1982年   15篇
  1981年   12篇
  1980年   11篇
  1979年   22篇
  1977年   7篇
  1971年   5篇
  1969年   4篇
  1967年   6篇
  1966年   6篇
排序方式: 共有5720条查询结果,搜索用时 15 毫秒
981.
After vaccination, memory CD8(+) T cells migrate to different organs to mediate immune surveillance. In most nonlymphoid organs, following an infection, CD8(+) T cells differentiate to become long-lived effector-memory cells, thereby providing long-term protection against a secondary infection. In this study, we demonstrated that Ag-specific CD8(+) T cells that migrate to the mouse brain following a systemic Listeria infection do not display markers reminiscent of long-term memory cells. In contrast to spleen and other nonlymphoid organs, none of the CD8(+) T cells in the brain reverted to a memory phenotype, and all of the cells were gradually eliminated. These nonmemory phenotype CD8(+) T cells were found primarily within the choroid plexus, as well as in the cerebrospinal fluid-filled spaces. Entry of these CD8(+) T cells into the brain was governed primarily by CD49d/VCAM-1, with the majority of entry occurring in the first week postinfection. When CD8(+) T cells were injected directly into the brain parenchyma, cells that remained in the brain retained a highly activated (CD69(hi)) phenotype and were gradually lost, whereas those that migrated out to the spleen were CD69(low) and persisted long-term. These results revealed a mechanism of time-bound immune surveillance to the brain by CD8(+) T cells that do not reside in the parenchyma.  相似文献   
982.
Every person harbors a population of potentially self-reactive lymphocytes controlled by tightly balanced tolerance mechanisms. Failures in this balance evoke immune activation and autoimmunity. In this study, we investigated the contribution of self-reactive CD8(+) T lymphocytes to chronic pulmonary inflammation and a possible role for naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells (nTregs) in counterbalancing this process. Using a transgenic murine model for autoimmune-mediated lung disease, we demonstrated that despite pulmonary inflammation, lung-specific CD8(+) T cells can reside quiescently in close proximity to self-antigen. Whereas self-reactive CD8(+) T cells in the inflamed lung and lung-draining lymph nodes downregulated the expression of effector molecules, those located in the spleen appeared to be partly Ag-experienced and displayed a memory-like phenotype. Because ex vivo-reisolated self-reactive CD8(+) T cells were very well capable of responding to the Ag in vitro, we investigated a possible contribution of nTregs to the immune control over autoaggressive CD8(+) T cells in the lung. Notably, CD8(+) T cell tolerance established in the lung depends only partially on the function of nTregs, because self-reactive CD8(+) T cells underwent only biased activation and did not acquire effector function after nTreg depletion. However, although transient ablation of nTregs did not expand the population of self-reactive CD8(+) T cells or exacerbate the disease, it provoked rapid accumulation of activated CD103(+)CD62L(lo) Tregs in bronchial lymph nodes, a finding suggesting an adaptive phenotypic switch in the nTreg population that acts in concert with other yet-undefined mechanisms to prevent the detrimental activation of self-reactive CD8(+) T cells.  相似文献   
983.
984.
Late domains are short peptide sequences encoded by enveloped viruses to promote the final separation of the nascent virus from the infected cell. These amino acid motifs facilitate viral egress by interacting with components of the ESCRT (endosomal sorting complex required for transport) machinery, ultimately leading to membrane scission by recruiting ESCRT-III to the site of viral budding. PPXY late (L) domains present in viruses such as murine leukemia virus (MLV) or human T-cell leukemia virus type 1 (HTLV-1) access the ESCRT pathway via interaction with HECT ubiquitin ligases (WWP1, WWP2, and Itch). However, the mechanism of ESCRT-III recruitment in this context remains elusive. In this study, we tested the arrestin-related trafficking (ART) proteins, namely, ARRDC1 (arrestin domain-containing protein 1) to ARRDC4 and TXNIP (thioredoxin-interacting protein), for their ability to function as adaptors between HECT ubiquitin ligases and the core ESCRT machinery in PPXY-dependent budding. We present several lines of evidence in support of such a role: ARTs interact with HECT ubiquitin ligases, and they also exhibit multiple interactions with components of the ESCRT pathway, namely, ALIX and Tsg101, and perhaps with an as yet unidentified factor. Additionally, the ARTs can be recruited to the site of viral budding, and their overexpression results in a PPXY-specific inhibition of MLV budding. Lastly, we show that WWP1 changes the ubiquitination status of ARRDC1, suggesting that the ARTs may provide a platform for ubiquitination in PPXY-dependent budding. Taken together, our results support a model whereby ARTs are involved in PPXY-mediated budding by interacting with HECT ubiquitin ligases and providing several alternative routes for ESCRT-III recruitment.  相似文献   
985.
The photoreceptor ribbon synapse is a highly specialized glutamatergic synapse designed for the continuous flow of synaptic vesicles to the neurotransmitter release site. The molecular mechanisms underlying ribbon synapse formation are poorly understood. We have investigated the role of the presynaptic cytomatrix protein Bassoon, a major component of the photoreceptor ribbon, in a mouse retina deficient of functional Bassoon protein. Photoreceptor ribbons lacking Bassoon are not anchored to the presynaptic active zones. This results in an impaired photoreceptor synaptic transmission, an abnormal dendritic branching of neurons postsynaptic to photoreceptors, and the formation of ectopic synapses. These findings suggest a critical role of Bassoon in the formation and the function of photoreceptor ribbon synapses of the mammalian retina.  相似文献   
986.
Chromosome segregation during mitosis and meiosis depends on the linkage of sister DNA molecules after replication. These links, known as sister-chromatid cohesion, are provided by a multi-subunit complex called cohesin. Recent papers suggest that chromatin-remodeling complexes also have a role in the generation of sister-chromatid cohesion. It remains unclear whether they do so by facilitating the recruitment of cohesin to specific chromosomal sequences or by modifying an event at replication forks giving rise to cohesion between sister DNAs.  相似文献   
987.
The in vivo and in vitro labeling of fusion proteins with synthetic molecules capable of probing and controlling protein function has the potential to become an important method in functional genomics and proteomics. We have recently introduced an approach for the specific labeling of fusion proteins, which is based on the generation of fusion proteins with the human DNA repair protein O6-alkylguanine-DNA alkyltransferase (hAGT) and the irreversible reaction of hAGT with O6-benzylguanine derivatives. Here, we report optimized protocols for the synthesis of O6-benzylguanine derivatives and the use of such derivatives for the labeling of different hAGT fusion proteins in vivo and in vitro.  相似文献   
988.
989.
990.
In the large Cucurbitaceae genus Cucumis, cucumber (C. sativus) is the only species with 2= 2= 14 chromosomes. The majority of the remaining species, including melon (C. melo) and the sister species of cucumber, C. hystrix, have 2= 2= 24 chromosomes, implying a reduction from = 12 to = 7. To understand the underlying mechanisms, we investigated chromosome synteny among cucumber, C. hystrix and melon using integrated and complementary approaches. We identified 14 inversions and a C. hystrix lineage‐specific reciprocal inversion between C. hystrix and melon. The results reveal the location and orientation of 53 C. hystrix syntenic blocks on the seven cucumber chromosomes, and allow us to infer at least 59 chromosome rearrangement events that led to the seven cucumber chromosomes, including five fusions, four translocations, and 50 inversions. The 12 inferred chromosomes (AK1–AK12) of an ancestor similar to melon and C. hystrix had strikingly different evolutionary fates, with cucumber chromosome C1 apparently resulting from insertion of chromosome AK12 into the centromeric region of translocated AK2/AK8, cucumber chromosome C3 originating from a Robertsonian‐like translocation between AK4 and AK6, and cucumber chromosome C5 originating from fusion of AK9 and AK10. Chromosomes C2, C4 and C6 were the result of complex reshuffling of syntenic blocks from three (AK3, AK5 and AK11), three (AK5, AK7 and AK8) and five (AK2, AK3, AK5, AK8 and AK11) ancestral chromosomes, respectively, through 33 fusion, translocation and inversion events. Previous results (Huang, S., Li, R., Zhang, Z. et al., 2009 , Nat. Genet. 41, 1275–1281; Li, D., Cuevas, H.E., Yang, L., Li, Y., Garcia‐Mas, J., Zalapa, J., Staub, J.E., Luan, F., Reddy, U., He, X., Gong, Z., Weng, Y. 2011a, BMC Genomics, 12, 396) showing that cucumber C7 stayed largely intact during the entire evolution of Cucumis are supported. Results from this study allow a fine‐scale understanding of the mechanisms of dysploid chromosome reduction that has not been achieved previously.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号