首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5045篇
  免费   426篇
  国内免费   2篇
  2023年   24篇
  2022年   43篇
  2021年   91篇
  2020年   53篇
  2019年   76篇
  2018年   85篇
  2017年   78篇
  2016年   143篇
  2015年   273篇
  2014年   290篇
  2013年   300篇
  2012年   464篇
  2011年   413篇
  2010年   265篇
  2009年   235篇
  2008年   307篇
  2007年   306篇
  2006年   274篇
  2005年   275篇
  2004年   268篇
  2003年   253篇
  2002年   241篇
  2001年   52篇
  2000年   33篇
  1999年   67篇
  1998年   66篇
  1997年   43篇
  1996年   42篇
  1995年   46篇
  1994年   48篇
  1993年   32篇
  1992年   28篇
  1991年   23篇
  1990年   20篇
  1989年   26篇
  1988年   12篇
  1987年   23篇
  1986年   14篇
  1985年   13篇
  1984年   19篇
  1983年   22篇
  1982年   9篇
  1981年   11篇
  1980年   8篇
  1979年   16篇
  1977年   6篇
  1976年   5篇
  1975年   4篇
  1971年   3篇
  1955年   3篇
排序方式: 共有5473条查询结果,搜索用时 31 毫秒
991.
BACKGROUND AND AIMS: In the human stomach expression of TNF-related apoptosis inducing ligand (TRAIL) and its receptors and the modulatory role of Helicobacter pylori are not well described. Therefore, we investigated the effect of H. pylori on the expression of TRAIL, FasL and their receptors (TRAIL-R1-R4, Fas) in gastric epithelial cells and examined their role in apoptosis. MATERIALS AND METHODS: mRNA and protein expression of TRAIL, FasL and their receptors were analyzed in human gastric epithelial cells using RT-PCR, Western blot, and immunohistochemistry. Gastric epithelial cells were incubated with FasL, TRAIL and/or H. pylori, and effects on expression, cell viability and epithelial apoptosis were monitored. Apoptosis was analyzed by histone ELISA, DAPI staining and immunohistochemistry. RESULTS: TRAIL, FasL and their receptor subtypes were expressed in human gastric mucosa, gastric epithelial cell primary cultures and gastric cancer cells. TRAIL, FasL and H. pylori caused a time- and concentration-dependent induction of DNA fragmentation in gastric cancer cells with synergistic effects. In addition, H. pylori caused a selective up-regulation of TRAIL, TRAIL-R1 and Fas mRNA and protein expression in gastric cancer cells. CONCLUSIONS: Next to FasL and Fas, TRAIL and all of its receptor subtypes are expressed in the human stomach and differentially modulated by H. pylori. TRAIL, FasL and H. pylori show complex interaction mediating apoptosis in human gastric epithelial cells. These findings might be important for the understanding of gastric epithelial cell kinetics in patients with H. pylori infection.  相似文献   
992.
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.  相似文献   
993.
Flash-induced photosynthetic oxygen evolution was measured in cells and thylakoid preparations from the coccoid cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7942 and from the filamentous cyanobacterium Oscillatoria chalybea. The resulting characteristic flash patterns from these cyanobacteria can be chemically altered by addition of exogenously added substances like CCCP, DCPiP and inorganic salts. Potassium chloride, manganese sulfate and calcium chloride affected the sequences by specific increases in the flash yield and/or effects on the transition parameters. Chloride appeared to exert the strongest stimulatory effect on the oxygen yield. In comparison to chloride, both manganese and calcium did not significantly stimulate the flash amplitudes as such, but improved the functioning of the oxygen evolving complex by decreasing the miss parameter alpha. Particular effects were observed with respect to the time constants of the relaxation kinetics of the first two flash signals Y1/Y2 of the cyanobacterial patterns. In the presence of the investigated chemicals the amplitudes of the first two flash signals (Y2 in particular) were increased and the relaxation kinetics were enhanced so that the time constant became about identical to the conditions of steady state oxygen flash amplitudes. The results provide further evidence against a possible participation of either PS I or respiratory processes to Y1/Y2 of cyanobacterial flash patterns. Dramatic effects were observed when protoplasts from Oscillatoria chalybea or cells from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7942 were exposed to weak far red background illumination. Under these conditions, Y2 (and to a smaller extent Y1) of otherwise unchanged flash sequences were specifically modified. Y2 was substantially increased and again the relaxation kinetics were accelerated making the signal indistinguishable from a Y(SS) signal. From the mathematical fit of the sequences we conclude that S2 contributes to 10-20% of the S-state distribution (in comparison to 0% in the control). Thus, far red background illumination might represent a valuable means for photosynthetic investigations where high amounts of S2 are required like e. g. EPR measurements. In such experiments the corresponding EPR signals appeared substantially enhanced following far red preillumination (Ahrling and Bader, unpublished observations). Our results clearly show that the 'controversial results' from parts of the literature suggesting the participation of different mechanisms (net oxygen evolution, inhibited uptake processes etc.) are not required to explain the flash-induced oxygen evolution in cyanobacteria: the seemingly 'incompatible' conditions and conformations can be perfectly interconverted by different modulation techniques (chemicals, far red) of the respective redox condition within the water oxidation complex of photosynthesis.  相似文献   
994.
As a response to hyperosmotic stress bacterial cells accumulate compatible solutes by synthesis or by uptake. Beside the instant activation of uptake systems after an osmotic upshift, transport systems show also a second, equally important type of regulation. In order to adapt the pool size of compatible solutes in the cytoplasm to the actual extent of osmotic stress, cells down-regulate solute uptake when the initial osmotic stress is compensated. Here we describe the role of the betaine transporter BetP, the major uptake carrier for compatible solutes in Corynebacterium glutamicum, in this adaptation process. For this purpose, betP was expressed in cells (C. glutamicum and Escherichia coli), which lack all known uptake systems for compatible solutes. Betaine uptake mediated by BetP as well as by a truncated form of BetP, which is deregulated in its response to hyperosmotic stress, was dissected into the individual substrate fluxes of unidirectional uptake, unidirectional efflux and net uptake. We determined a strong decrease of unidirectional betaine uptake by BetP in the adaptation phase. The observed decrease in net uptake was thus mainly due to a decrease of Vmax of BetP and not a consequence of the presence of separate efflux system(s). These results indicate that adaptation of BetP to osmotic compensation is different from activation by osmotic stress and also different from previously described adaptation mechanisms in other organisms. Cytoplasmic K+, which was shown to be responsible for activation of BetP upon osmotic stress, as well as a number of other factors was ruled out as triggers for the adaptation process. Our results thus indicate the presence of a second type of signal input in the adaptive regulation of osmoregulated carrier proteins.  相似文献   
995.
Prokaryotic toxin-antitoxin stress response loci   总被引:11,自引:0,他引:11  
Although toxin-antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin-antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin-antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.  相似文献   
996.
BceRS and PsdRS are paralogous two‐component systems in Bacillus subtilis controlling the response to antimicrobial peptides. In the presence of extracellular bacitracin and nisin, respectively, the two response regulators (RRs) bind their target promoters, PbceA or PpsdA, resulting in a strong up‐regulation of target gene expression and ultimately antibiotic resistance. Despite high sequence similarity between the RRs BceR and PsdR and their known binding sites, no cross‐regulation has been observed between them. We therefore investigated the specificity determinants of PbceA and PpsdA that ensure the insulation of these two paralogous pathways at the RR–promoter interface. In vivo and in vitro analyses demonstrate that the regulatory regions within these two promoters contain three important elements: in addition to the known (main) binding site, we identified a linker region and a secondary binding site that are crucial for functionality. Initial binding to the high‐affinity, low‐specificity main binding site is a prerequisite for the subsequent highly specific binding of a second RR dimer to the low‐affinity secondary binding site. In addition to this hierarchical cooperative binding, discrimination requires a competition of the two RRs for their respective binding site mediated by only slight differences in binding affinities.  相似文献   
997.
Caveolae have been implicated in sensing of cell volume perturbations, yet evidence is still limited and findings contradictory. Here, we investigated the possible role of caveolae in cell volume regulation and volume sensitive signaling in an adipocyte system with high (3T3-L1 adipocytes); intermediate (3T3-L1 pre-adipocytes); and low (cholesterol-depleted 3T3-L1 pre-adipocytes) caveolae levels. Using large-angle light scattering, we show that compared to pre-adipocytes, differentiated adipocytes exhibit several-fold increased rates of volume restoration following osmotic cell swelling (RVD) and osmotic cell shrinkage (RVI), accompanied by increased swelling-activated taurine efflux. However, caveolin-1 distribution was not detectably altered after osmotic swelling or shrinkage, and caveolae integrity, as studied by cholesterol depletion or expression of dominant negative Cav-1, was not required for either RVD or RVI in pre-adipocytes. The insulin receptor (InsR) localizes to caveolae and its expression dramatically increases upon adipocyte differentiation. In pre-adipocytes, InsR and its effectors focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK1/2) localized to focal adhesions and were activated by a 5 min exposure to insulin (100 nM). Osmotic shrinkage transiently inhibited InsR Y(146)-phosphorylation, followed by an increase at t=15 min; a similar pattern was seen for ERK1/2 and FAK, in a manner unaffected by cholesterol depletion. In contrast, cell swelling had no detectable effect on InsR, yet increased ERK1/2 phosphorylation. In conclusion, differentiated 3T3-L1 adipocytes exhibit greatly accelerated RVD and RVI responses and increased swelling-activated taurine efflux compared to pre-adipocytes. Furthermore, in pre-adipocytes, Cav-1/caveolae integrity is not required for volume regulation. Given the relationship between hyperosmotic stress and insulin signaling, the finding that cell volume regulation is dramatically altered upon adipocyte differentiation may be relevant for the understanding of insulin resistance and metabolic syndrome.  相似文献   
998.
The adenovirus fiber knob causes the first step in the interaction of adenovirus with cell membrane receptors. To obtain information on the receptor binding site(s), the interaction of labeled cell membrane proteins to synthetic peptides covering the adenovirus type 3 (Ad3) fiber knob was studied. Peptide P6 (amino acids [aa] 187 to 200), to a lesser extent P14 (aa 281 to 294), and probably P11 (aa 244 to 256) interacted specifically with cell membrane proteins, indicating that these peptides present cell receptor binding sites. Peptides P6, P11, and P14 span the D, G, and I β-strands of the R-sheet, respectively. The other reactive peptides, P2 (aa 142 to 156), P3 (aa 153 to 167), and P16 (aa 300 to 319), probably do not present real receptor binding sites. The binding to these six peptides was inhibited by Ad3 virion and was independent of divalent cations. We have also screened the antigenic epitopes on the knob with recombinant Ad3 fiber, recombinant Ad3 fiber knob, and Ad3 virion-specific antisera by enzyme-linked immunosorbent assay. The main antigenic epitopes were presented by P3, P6, P12 (aa 254 to 269), P14, and especially the C-terminal P16. Peptides P14 and P16 of the Ad3 fiber knob were able to inhibit Ad3 infection of cells.  相似文献   
999.
Carbonic anhydrase IX (CAIX) is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy.

Methods

Phage display was performed with a 12 amino acid phage display library by panning against a recombinant extracellular domain of human carbonic anhydrase IX. The identified peptide CaIX-P1 was chemically synthesized and tested in vitro on various cell lines and in vivo in Balb/c nu/nu mice carrying subcutaneously transplanted tumors. Binding, kinetic and competition studies were performed on the CAIX positive human renal cell carcinoma cell line SKRC 52, the CAIX negative human renal cell carcinoma cell line CaKi 2, the human colorectal carcinoma cell line HCT 116 and on human umbilical vein endothelial cells (HUVEC). Organ distribution studies were carried out in mice, carrying SKRC 52 tumors. RNA expression of CAIX in HCT 116 and HUVEC cells was investigated by quantitative real time PCR.

Results

In vitro binding experiments of 125I-labeled-CaIX-P1 revealed an increased uptake of the radioligand in the CAIX positive renal cell carcinoma cell line SKRC 52. Binding of the radioligand in the colorectal carcinoma cell line HCT 116 increased with increasing cell density and correlated with the mRNA expression of CAIX. Radioligand uptake was inhibited up to 90% by the unlabeled CaIX-P1 peptide, but not by the negative control peptide octreotide at the same concentration. No binding was demonstrated in CAIX negative CaKi 2 and HUVEC cells. Organ distribution studies revealed a higher accumulation in SKRC 52 tumors than in heart, spleen, liver, muscle, intestinum and brain, but a lower uptake compared to blood and kidney.

Conclusions

These data indicate that CaIX-P1 is a promising candidate for the development of new ligands targeting human carbonic anhydrase IX.  相似文献   
1000.
A new species of microsporidia from Drosophila melanogaster was investigated by light and electron microscopy and by ribosomal RNA (rRNA) sequencing. This microsporidium and the previously described Nosema kingi and Nosema acridophagus have been transferred to the new genus Tubulinosema gen. nov. with the following characters: nuclei are in diplokaryotic arrangement during the life cycle. All stages are in direct contact with the host cell cytoplasm, slightly anisofilar polar tube with the last coils being smaller in diameter arranged in one or two rows on both sides of the diplokaryon and small tubuli on the surface of late meronts. Spores are oval or slightly pyriform. Thick endospore wall, thinner over anchoring disc. This new genus and the genus Brachiola have been placed in a new family Tubulinosematidae fam. nov. Phylogenetic analysis of small subunit rRNA sequences by different methods placed Tubulinosema spp. in one clade with the genus Brachiola forming its sister clade, which is distant from the clade containing the true Nosema spp. including Nosema bombycis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号