首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   48篇
  540篇
  2023年   2篇
  2022年   5篇
  2021年   11篇
  2020年   7篇
  2019年   3篇
  2018年   10篇
  2017年   11篇
  2016年   13篇
  2015年   30篇
  2014年   34篇
  2013年   39篇
  2012年   52篇
  2011年   44篇
  2010年   20篇
  2009年   23篇
  2008年   32篇
  2007年   36篇
  2006年   33篇
  2005年   18篇
  2004年   17篇
  2003年   17篇
  2002年   17篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1970年   2篇
  1967年   1篇
  1966年   2篇
  1958年   1篇
  1956年   1篇
排序方式: 共有540条查询结果,搜索用时 15 毫秒
61.
BACKGROUND: Hepatitis C virus (HCV)-derived lipopeptides can induce epitope-specific immune responses in lymphocytes from HCV-naive individuals. We analyzed whether such T cells generated by in vitro immunization with HCV core-derived lipopeptides exert HCV-specific cytolytic activity. METHODS: Using a sensitive flow cytometric cytotoxicity assay we characterized HCV-specific cytotoxicity in T cells generated in vitro with HCV core-derived 25-mer lipopeptides. In addition, we studied expressions of Fas ligand and perforin and interferon-gamma (IFN-gamma) secretion in HLA-A2-HCV(core_35-44) tetramer-positive T cells generated with lipopeptide amino acid 20-44 (LP20-44). RESULTS: CD8+ T cells induced in vitro with HCV core-derived lipopeptides only infrequently exerted HCV-specific cytotoxicity, irrespective of whether antigen-coated T2 cells or autologous B lymphoblasts were used as targets. Detailed analysis of HLA-A2-HCV(core_35-44) tetramer-positive T cells generated with LP20-44 revealed that in vitro immunization resulted in T cells that secreted IFN-gamma after antigen-specific restimulation and that upregulated expression of Fas ligand but not of perforin. CONCLUSIONS: Our data confirm at the functional level that HCV lipopeptides induce antigen-specific T lymphocytes that produce IFN-gamma but exert significant cytotoxicity in only a minority of experiments, probably because expression of cytolytic effector molecules is not enhanced in their granules.  相似文献   
62.
Degradation of the extracellular matrix (ECM) is a prominent feature in osteoarthritis (OA), which is mainly because of the imbalance between anabolic and catabolic processes in chondrocytes resulting in cartilage and bone destruction. Various proteases act in concert to degrade matrix components, e.g. type II collagen, MMPs, ADAMTS, and cathepsins. Protease-generated collagen fragments may foster the destructive process. However, the signaling pathways associated with the action of collagen fragments on chondrocytes have not been clearly defined. The present data demonstrate that the N-terminal telopeptide of collagen type II enhances expression of cathepsins B, K, and L in articular chondrocytes at mRNA, protein, and activity levels, mediated at least in part through extracellular calcium. We also demonstrate that the induction is associated with the activation of protein kinase C and p38 MAP kinase.  相似文献   
63.
64.
Three pathogenic species of the genus Yersinia assemble adhesive fimbriae via the FGL‐chaperone/usher pathway. Closely related Y. pestis and Y. pseudotuberculosis elaborate the pH6 antigen (Psa), which mediates bacterial attachment to alveolar cells of the lung. Y. enterocolitica, instead, assembles the homologous fimbriae Myf of unknown function. Here, we discovered that Myf, like Psa, specifically recognizes β1‐3– or β1‐4–linked galactose in glycosphingolipids, but completely lacks affinity for phosphatidylcholine, the main receptor for Psa in alveolar cells. The crystal structure of a subunit of Psa (PsaA) complexed with choline together with mutagenesis experiments revealed that PsaA has four phosphatidylcholine binding pockets that enable super‐high‐avidity binding of Psa‐fibres to cell membranes. The pockets are arranged as six tyrosine residues, which are all missing in the MyfA subunit of Myf. Conversely, the crystal structure of the MyfA‐galactose complex revealed that the galactose‐binding site is more extended in MyfA, enabling tighter binding to lactosyl moieties. Our results suggest that during evolution, Psa has acquired a tyrosine‐rich surface that enables it to bind to phosphatidylcholine and mediate adhesion of Y. pestis/pseudotuberculosis to alveolar cells, whereas Myf has specialized as a carbohydrate‐binding adhesin, facilitating the attachment of Y. enterocolitica to intestinal cells.  相似文献   
65.
The impact of regional factors (such as speciation or dispersal) on the species richness in local communities (SL) has received increasing attention. A prominent method to infer the impact of regional factors is the comparison of species richness in local assemblages (SL) with the total number of species in the region (SR). Linear relations between SR and SL have been interpreted as an indication of strong regional influence and weak influence of interactions within local communities. We propose that two aspects bias the outcome of such comparisons: (1) the spatial scale of local and regional sampling, and (2) the body size of the organisms. The impact of the local area reflects the scales of ecological interactions, whereas the ratio between local and regional area reflects the inherent moment of autocorrelation. A proposed impact of body size on the relation is based on the high dispersal and high abundance of small organisms. We predict strongest linearity between SR and SL for large organisms, for large local areas (less important ecological interactions) and for sampling designs where the local habitat area covers a high proportion of the regional area (more important autocorrelation). We conducted a meta-analysis on 63 relations obtained from the literature. As predicted, the linearity of the relationship between SL and SR increased with the proportion of local to regional sampling area. In contrast, neither the body size of the organisms nor the local area itself was significantly related to the relation between SL and SR. This indicated that ecological interactions played a minor role in the shape of local to regional richness plots, which instead was mainly influenced by the sampling design. We found that the studies published so far were highly biased towards larger organisms and towards high similarity between the local and regional area. The proposed prevalence of linear relationships may thus be an artefact and plots of SL to SR are not a suitable tool with which to infer the strength of local interactions.  相似文献   
66.
Dispersal is a major factor regulating the number of coexisting species, but the relationship between species diversity and ecosystem processes has mainly been analysed for communities closed to dispersal. We experimentally investigated how initial local diversity and dispersal frequency affect local diversity and biomass production in open benthic microalgal metacommunities. Final local species richness and local biomass production were strongly influenced by dispersal frequency but not by initial local diversity. Both final local richness and final local biomass showed a hump-shaped pattern with increasing dispersal frequency, with a maximum at intermediate dispersal frequencies. Consequently, final local biomass increased linearly with increasing final richness. We conclude that the general relationship between richness and ecosystem functioning remains valid in open systems, but the maintenance of ecosystem processes significantly depends on the effects of dispersal on species richness and local interactions.  相似文献   
67.
Mutations identified in the hypoxanthine phosphoribosyltransferase (HPRT) gene of patients with Lesch-Nyhan (LN) syndrome are dominated by simple base substitutions. Few hotspot positions have been identified, and only three large genomic rearrangements have been characterized at the molecular level. We have identified one novel mutation, two tentative hot spot mutations, and two deletions by direct sequencing of HPRT cDNA or genomic DNA from fibroblasts or T-lymphocytes from LN patients in five unrelated families. One is a missense mutation caused by a 610C→T transition of the first base of HPRT exon 9. This mutation has not been described previously in an LN patient. A nonsense mutation caused by a 508C→T transition at a CpG site in HPRT exon 7 in the second patient and his younger brother is the fifth mutation of this kind among LN patients. Another tentative hotspot mutation in the third patient, a frame shift caused by a G nucleotide insertion in a monotonous repeat of six Gs in HPRT exon 3, has been reported previously in three other LN patients. The fourth patient had a tandem deletion: a 57-bp deletion in an internally repeated Alu-sequence of intron 1 was separated by 14 bp from a 627-bp deletion that included HPRT exon 2 and was flanked by a 4-bp repeat. This complex mutation is probably caused by a combination of homologous recombination and replication slippage. Another large genomic deletion of 2969 bp in the fifth patient extended from one Alu-sequence in the promoter region to another Alu-sequence of intron 1, deleting the whole of HPRT exon 1. The breakpoints were located within two 39-bp homologous sequences, one of which overlapped with a well-conserved 26-bp Alu-core sequence previously suggested as promoting recombination. These results contribute to the establishment of a molecular spectrum of LN mutations, support previous data indicating possible mutational hotspots, and provide evidence for the involvement of Alu-mediated recombination in HPRT deletion mutagenesis. Received: 21 April 1998 / Accepted: 16 July 1998  相似文献   
68.
The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects’ genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes.  相似文献   
69.
70.
Temperature variation poses a substantial challenge for individual survival and reproductive success, warranting effective means to counter negative effects of temperature extremes. Phenotypic plasticity offers a particularly powerful mechanism to cope with short-time temperature fluctuations. While temperature-induced plasticity in thermal tolerance has been widely explored, effects of other environmental factors have received much less attention. Using a full-factorial design we here show that variation in temperature stress resistance can be triggered by photoperiod (and temperature) in the fly Protophormia terraenovae, with shorter day lengths inducing more cold- and longer day lengths more heat-tolerant phenotypes. Such plastic changes were not related to different developmental pathways (reproductive activity or reproductive diapause), and can be induced during development but also in the adult stage (at least for cold tolerance). We suggest that short-term, photoperiod-mediated changes in insect thermal tolerance represent a mechanism of adaptive seasonal plasticity. Photoperiod further affected development time and body size, the significance of which is currently unclear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号