首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27833篇
  免费   15660篇
  国内免费   2篇
  43495篇
  2024年   3篇
  2023年   20篇
  2022年   120篇
  2021年   439篇
  2020年   2218篇
  2019年   3752篇
  2018年   3867篇
  2017年   4132篇
  2016年   4143篇
  2015年   4104篇
  2014年   3759篇
  2013年   4238篇
  2012年   1966篇
  2011年   1650篇
  2010年   3152篇
  2009年   1889篇
  2008年   829篇
  2007年   430篇
  2006年   399篇
  2005年   411篇
  2004年   389篇
  2003年   373篇
  2002年   366篇
  2001年   273篇
  2000年   195篇
  1999年   152篇
  1998年   35篇
  1997年   22篇
  1996年   26篇
  1995年   23篇
  1994年   23篇
  1993年   16篇
  1992年   11篇
  1991年   10篇
  1990年   5篇
  1989年   7篇
  1988年   7篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1979年   3篇
  1975年   2篇
  1974年   2篇
  1882年   1篇
  1881年   1篇
  1873年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Excessive proteolysis of fibronectin (FN) impairs tissue repair in chronic wounds. Since FN is essential in wound healing, our goal is to improve its proteolytic stability and at the same time preserve its biological activity. We have previously shown that reduced FN conjugated with polyethylene glycol (PEG) at cysteine residues is more proteolytically stable than native FN. Cysteine‐PEGylated FN supported cell adhesion and migration to the same extent as native FN. However, unlike native FN, cysteine‐PEGylated FN was not assembled into an extracellular matrix (ECM) when immobilized. Here, we present an alternative approach in which FN is preferentially PEGylated at lysine residues using different molecular weight PEGs. We show that lysine PEGylation does not perturb FN secondary structure. PEG molecular weight, from 2 to 10 kDa, positively correlates with FN–PEG proteolytic stability. Cell adhesion, cell spreading, and gelatin binding decrease with increasing molecular weight of PEG. The 2‐kDa FN–PEG conjugate shows comparable cell adhesion to native FN and binds gelatin. Moreover, immobilized FN–PEG is assembled into ECM fibrils. In summary, lysine PEGylation of FN can be used to stabilize FN against proteolytic degradation with minimal perturbation to FN structure and retained biological activity.  相似文献   
92.
Sepsis is a systemic inflammatory response resulting from local infection due, at least in part, to impaired neutrophil migration. IL-12 and IL-18 play an important role in neutrophil migration. We have investigated the mechanism and relative role of IL-12 and IL-18 in polymicrobial sepsis induced by cecal ligation and puncture (CLP) in mice. Wild-type (WT) and IL-18(-/-) mice were resistant to sublethal CLP (SL-CLP) sepsis. In contrast, IL-12(-/-) mice were susceptible to SL-CLP sepsis with high bacteria load in peritoneal cavity and systemic inflammation (serum TNF-alpha and lung neutrophil infiltration). The magnitude of these events was similar to those observed in WT mice with lethal CLP sepsis. The inability of IL-12(-/-) mice to restrict the infection was not due to impairment of neutrophil migration, but correlated with decrease of phagocytosis, NO production, and microbicidal activities of their neutrophils, and with reduction of systemic IFN-gamma synthesis. Consistent with this observation, IFN-gamma(-/-) mice were as susceptible to SL-CLP as IL-12(-/-) mice. Moreover, addition of IFN-gamma to cultures of neutrophils from IL-12(-/-) mice restored their phagocytic, microbicidal activities and NO production. Mortality of IL-12(-/-) mice to SL-CLP was prevented by treatment with IFN-gamma. Thus we show that IL-12, but not IL-18, is critical to an efficient host defense in polymicrobial sepsis. IL-12 acts through induction of IFN-gamma and stimulation of phagocytic and microbicidal activities of neutrophils, rather than neutrophil migration per se. Our data therefore provide further insight into the defense mechanism against this critical area of infectious disease.  相似文献   
93.
QST is a differentiation parameter based on the decomposition of the genetic variance of a trait. In the case of additive inheritance and absence of selection, it is analogous to the genic differentiation measured on individual loci, FST. Thus, QST?FST comparison is used to infer selection: selective divergence when QST > FST, or convergence when QST < FST. The definition of Q‐statistics was extended to two‐level hierarchical population structures with Hardy–Weinberg equilibrium. Here, we generalize the Q‐statistics framework to any hierarchical population structure. First, we developed the analytical definition of hierarchical Q‐statistics for populations not at Hardy–Weinberg equilibrium. We show that the Q‐statistics values obtained with the Hardy–Weinberg definition are lower than their corresponding F‐statistics when FIS > 0 (higher when FIS < 0). Then, we used an island model simulation approach to investigate the impact of inbreeding and dominance on the QST?FST framework in a hierarchical population structure. We show that, while differentiation at the lower hierarchical level (QSR) is a monotonic function of migration, differentiation at the upper level (QRT) is not. In the case of additive inheritance, we show that inbreeding inflates the variance of QRT, which can increase the frequency of QRT > FRT cases. We also show that dominance drastically reduces Q‐statistics below F‐statistics for any level of the hierarchy. Therefore, high values of Q‐statistics are good indicators of selection, but low values are not in the case of dominance.  相似文献   
94.
95.
Revegetation is a traditional practice widely used for soil and water conservation on the Loess Plateau in China. However, there has been a lack of reports on soil microbial–biochemical indices required for a comprehensive evaluation of the success of revegetation systems. In this study, we examined the effects of revegetation on major soil nutrients and microbial–biochemical properties in an artificial alfalfa grassland, an enclosed natural grassland, and an artificial shrubland (Caragana korshinskii), with an abandoned cropland as control. Results showed that at 0–5, 5–20, and 20–40 cm depths, soil organic carbon, alkaline extractable nitrogen and available potassium were higher in natural grassland and artificial shrubland compared with artificial grassland and abandoned cropland. Soil microbial biomass C (Cmic) and phosphorous (Pmic) substantially decreased with depth at all sites, and in abandoned cropland was significantly lower than those of natural grassland, artificial grassland, and artificial shrubland at the depth of 0–5 cm. Soil microbial biomass N (Nmic) was higher in artificial shrubland and abandoned cropland compared with that in natural and artificial grasslands. Both Cmic and Pmic were significantly different between the 23‐year‐old and the 13‐year‐old artificial shrublands at the 0–5 cm depth. The activities of soil invertase, urease, and alkaline phosphatase in natural grassland and artificial shrubland were higher than those in artificial grassland and abandoned cropland. This study demonstrated that the regeneration of both natural grassland and artificial shrubland effectively preserved and enhanced soil microbial biomass and major nutrient cycling, thus is an ecologically beneficial practice for recovery of degraded soils on the Loess Plateau.  相似文献   
96.
97.
98.
In this study, the role of Toll‐like receptor 2 (TLR2) in immune responses of murine peritoneal mesothelial cells against Bacteroides fragilis was investigated. Enzyme linked immunosorbent assay was used to measure cytokines and chemokines. Activation of nuclear factor κB (NF‐κB‐α) and mitogen‐activated protein kinases (MAP kinases) was investigated by western blot analysis. B. fragilis induced production of interleukin‐6, chemokine (C‐X‐C motif) ligand 1 (CXCL1) and chemokine (C‐C motif) ligand 2 (CCL2) in wild type peritoneal mesothelial cells; this was impaired in TLR2‐deficient cells. In addition, in response to B. fragilis, phosphorylation of inhibitory NF‐κB‐α and c‐Jun N‐terminal kinase mitogen‐activated protein kinase (MAPK) was induced in wild type mesothelial cells, but not in TLR2‐deficient cells,. Inhibitor assay revealed that NF‐κB and MAPKs are essential for B. fragilis‐induced production of CXCL1 and CCL2 in mesothelial cells. These findings suggest that TLR2 mediates immune responses in peritoneal mesothelial cells in response to B. fragilis.  相似文献   
99.
Human ACE is a central component of the renin–angiotensin system and a major therapeutic target for cardiovascular diseases. The somatic form of the enzyme (sACE) comprises two homologous metallopeptidase domains (N and C), each bearing a zinc active site with similar but distinct substrate and inhibitor specificities. In this study, we present the biological activity of silacaptopril, a silylated analogue of captopril, and its binding affinity towards ACE. Based on the recently determined crystal structures of both the ACE domains, a series of docking calculations were carried out in order to study the structural characteristics and the binding properties of silacaptopril and its analogues with ACE. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号