首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15307篇
  免费   1410篇
  国内免费   7篇
  16724篇
  2023年   41篇
  2022年   90篇
  2021年   171篇
  2020年   125篇
  2019年   133篇
  2018年   172篇
  2017年   179篇
  2016年   349篇
  2015年   569篇
  2014年   644篇
  2013年   761篇
  2012年   1093篇
  2011年   1166篇
  2010年   766篇
  2009年   692篇
  2008年   920篇
  2007年   1023篇
  2006年   867篇
  2005年   878篇
  2004年   919篇
  2003年   859篇
  2002年   824篇
  2001年   167篇
  2000年   121篇
  1999年   219篇
  1998年   254篇
  1997年   165篇
  1996年   167篇
  1995年   156篇
  1994年   158篇
  1993年   150篇
  1992年   138篇
  1991年   97篇
  1990年   113篇
  1989年   99篇
  1988年   110篇
  1987年   92篇
  1986年   91篇
  1985年   93篇
  1984年   126篇
  1983年   92篇
  1982年   119篇
  1981年   113篇
  1980年   98篇
  1979年   55篇
  1978年   66篇
  1977年   64篇
  1976年   64篇
  1975年   46篇
  1974年   56篇
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
151.
152.

Background

The flat-headed cat (Prionailurus planiceps) is one of the world''s least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of camera-trapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flat-headed cat.

Methodology/Principal Findings

In this study, we designed a predictive species distribution model using the Maximum Entropy (MaxEnt) algorithm to reassess the potential current distribution and conservation status of the flat-headed cat. Eighty-eight independent species occurrence records were gathered from field surveys, literature records, and museum collections. These current and historical records were analysed in relation to bioclimatic variables (WorldClim), altitude (SRTM) and minimum distance to larger water resources (Digital Chart of the World). Distance to water was identified as the key predictor for the occurrence of flat-headed cats (>50% explanation). In addition, we used different land cover maps (GLC2000, GlobCover and SarVision LLC for Borneo), information on protected areas and regional human population density data to extract suitable habitats from the potential distribution predicted by the MaxEnt model. Between 54% and 68% of suitable habitat has already been converted to unsuitable land cover types (e.g. croplands, plantations), and only between 10% and 20% of suitable land cover is categorised as fully protected according to the IUCN criteria. The remaining habitats are highly fragmented and only a few larger forest patches remain.

Conclusion/Significance

Based on our findings, we recommend that future conservation efforts for the flat-headed cat should focus on the identified remaining key localities and be implemented through a continuous dialogue between local stakeholders, conservationists and scientists to ensure its long-term survival. The flat-headed cat can serve as a flagship species for the protection of several other endangered species associated with the threatened tropical lowland forests and surface fresh-water sources in this region.  相似文献   
153.
pSCL2 (120 kb), one of the linear plasmids found in Streptomyces clavuligerus NRRL3585, was isolated and partially sequenced. Computational analysis of the central region of pSCL2 revealed the presence of two open reading frames that appear to encode proteins highly homologous to RepL1 and RepL2, replication proteins from pSLA2-L, the large linear plasmid in Streptomyces rochei. The S. clavuligerus open reading frames were designated repC1 and repC2, encoding the proteins RepC1 (150 amino acids) and RepC2 (102 amino acids), respectively. The RepC and RepL proteins have identical translation features and very similar predicted secondary and tertiary structures. Functional analysis confirmed that RepC1 is essential for replication initiation of pSCL2, whereas RepC2 is dispensable but may play a role in copy number control. The RepC and RepL proteins do not show similarity to any other bacterial plasmid replication proteins. Three regions of DNA sequence, Box 1 (1050-850 bp), Box 2 (723-606 bp), and Box 3 (224-168 bp), located upstream of repC1, were also shown to be essential or very important for replication of pSCL2.  相似文献   
154.
Two widespread assumptions underlie theoretical models of the evolution of sex allocation in hermaphroditic species: (1) resource allocations to male and female function are heritable; and (2) there is an intrinsic, genetically based negative correlation between male and female reproductive function. These assumptions have not been adequately tested in wild species, although a few studies have detected either genetic variation in pollen and ovule production per flower or evidence of trade-offs between male and female investment at the whole plant level. It may also be argued, however, that in highly autogamous, perfect-flowered plant taxa that exhibit genetic variation in gamete production, strong stabilizing selection for an efficient pollen:ovule ratio should result in a positive correlation among genotypes with respect to mean ovule and mean pollen production per flower. Here we report the results of a three-generation artificial selection experiment conducted on a greenhouse population of the autogamous annual plant Spergularia marina. Starting with a base population of 1200 individuals, we conducted intense mass selection for two generations, creating four selected lines (high and low ovule production per flower; high and low anther production per flower) and a control line. By examining the direct and correlated responses of several floral traits to selection on gamete production per flower, we evaluated the expectations that primary sexual investment would exhibit heritable variation and that resource-sharing, variation in resource-garnering ability, or developmental constraints mold the genetic correlations expressed among floral organs. The observed direct and correlated responses to selection on male and female gamete production revealed significant heritabilities of both ovule and anther production per flower and a significant negative genetic correlation between them. When plants were selected for increased ovules per flower over two generations, ovule production increased and anther production declined relative to the control line. Among plants selected for decreased anthers per flower, we observed a decline in anther production and an increase in ovule production relative to the control line. In contrast, the lines selected for low ovules per flower and for high anthers per flower exhibited no evidence for significant genetic correlations between male and female primary investment. Correlated responses to selection also indicate a genetically based negative correlation between the production of normal versus developmentally abnormal anthers (staminoid organs); a positive correlation between the production of ovules versus staminoid organs; and a positive correlation between the production of anthers and petals. The negative relationship between male versus female primary investment supports classical sex allocation theory, although the asymmetrical correlated responses to selection indicate that this relationship is not always expressed.  相似文献   
155.
We are characterizing a suiteof Pisum sativum mutants that alter inflorescence architecture to construct a model for the genetic regulation of inflorescence development in a plant with a compound raceme. Such a model, when compared with those created forAntirrhinum majus andArabidopsis thaliana, both of which have simple racemes, should provide insight into the evolution of the development of inflorescence architecture. The highly conserved nature of cloned genes that regulate reproductive development in plants and the morphological similarities among our mutants and those identified inA. majus andA. thaliana enhance the probability that a developmental genetics approach will be fruitful. Here we describe sixP. sativum mutants that affect morphologically and architecturally distinct aspects of the inflorescence, and we analyze interactions among these genes. Both vegetative and inflorescence growth of the primary axis is affected byUNIFOLIA TA, which is necessary for the function ofDETERMINATE (DET).DET maintains indeterminacy in the first-order axis. In its absence, the meristem differentiates as a stub covered with epidermal hairs.DET interacts withVEGETATIVE1 (VEG1).VEG1 appears essential for second-order inflorescence (I2) development.veg1 mutants fail to flower or differentiate the I2 meristem into a rudimentary stub,det veg1 double mutants produce true terminal flowers with no stubs, indicating that two genes must be eliminated for terminal flower formation inP. sativum, whereas elimination of a single gene accomplishes this inA. thaliana andA. majus. NEPTUNE also affects I2 development by limiting to two the number of flowers produced prior to stub formation. Its role is independent ofDET, as indicated by the additive nature of the double mutantdet nep. UNI, BROC, and PIM all play roles in assigning floral meristem identity to the third-order branch.pim mutants continue to produce inflorescence branches, resulting in a highly complex architecture and aberrant flowers.uni mutants initiate a whorl of sepals, but floral organogenesis is aberrant beyond that developmental point, and the double mutantuni pim lacks identifiable floral organs. A wild-type phenotype is observed inbroc plants, butbroc enhancesthe pim phenotype in the double mutant, producing inflorescences that resemble broccoli. Collectively these genes ensure that only the third-order meristem, not higher- or lower-order meristems, generates floral organs, thus precisely regulating the overall architecture of the plant. Gene symbols used in this article: For clarity a common symbolization is used for genes of all species discussed in this article. Genes are symbolized with italicized capital letters. Mutant alleles are represented by lowercase, italicized letters. In both cases, the number immediately following the gene symbol differentiates among genes with the same symbol. If there are multiple alleles, a hyphen followed by a number is used to distinguish alleles. Protein products are represented by capital letters without italics.  相似文献   
156.
157.
158.
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号