首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23315篇
  免费   2242篇
  国内免费   9篇
  25566篇
  2022年   132篇
  2021年   284篇
  2020年   194篇
  2019年   229篇
  2018年   278篇
  2017年   276篇
  2016年   533篇
  2015年   837篇
  2014年   976篇
  2013年   1152篇
  2012年   1535篇
  2011年   1647篇
  2010年   1069篇
  2009年   983篇
  2008年   1324篇
  2007年   1445篇
  2006年   1239篇
  2005年   1218篇
  2004年   1285篇
  2003年   1194篇
  2002年   1162篇
  2001年   326篇
  2000年   276篇
  1999年   377篇
  1998年   373篇
  1997年   268篇
  1996年   275篇
  1995年   242篇
  1994年   236篇
  1993年   240篇
  1992年   254篇
  1991年   214篇
  1990年   224篇
  1989年   179篇
  1988年   188篇
  1987年   176篇
  1986年   160篇
  1985年   180篇
  1984年   209篇
  1983年   167篇
  1982年   183篇
  1981年   184篇
  1980年   154篇
  1979年   102篇
  1978年   119篇
  1977年   109篇
  1976年   113篇
  1975年   91篇
  1974年   103篇
  1973年   85篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Summary -(l--Aminoadipyl)-l-cysteinyl-d-valine (ACV)-synthetase fromStreptomyces clavuligerus was studied under conditions that enabled the reuse of the enzyme. Coupling of ACV-synthetase to DEAE-Trisacryl and aminopropyl-glass resulted in an immobilized enzyme product of little or no catalytic activity. However, an enzyme reactor was designed by physical confinement of partially-purified ACV-synthetase in an ultrafiltration cell. This system was stimulated by phosphoenolpyruvate at lower concentrations of ATP, an effect not observed with purified enzyme. Up to 30% conversion of the limiting substrate, cysteine, to ACV occurred under semi-continuous conditions. Reaction products were investigated as potential inhibitors: AMP was the most inhibitory, but only when used at concentrations in excess of those produced in reaction mixtures. Under a nitrogen atmosphere, both product and enzyme stabilities were greatly improved and the enzyme retained 45–46% of its initial activity after five uses at room temperature during a 24-h period. Extrapolations based on these data suggest that 1.3 g partially purified enzyme (0.13 U g–1) would be capable of producing 411 mg of ACV in a 1-L reaction mixture in this period.  相似文献   
82.
83.
84.
85.
Quantitative trait locus (QTL) analysis is a statistical method that can be applied to identify loci making a significant impact on a phenotype. For the phenotype of susceptibility to diet-induced atherosclerosis in the mouse, we have studied four quantitative traits: area of aortic fatty streaks and serum concentrations of high-density lipoprotein-bound cholesterol (HDL-cholesterol), apolipoprotein A-I, and apolipoprotein A-II (apo A-II). QTL analysis revealed a significant locus on chromosome 1 distal impacting serum apo A-II concentration on a high-fat diet and serum HDL-cholesterol concentration on a chow diet. This locus is presumablyApoa-2, the structural gene for apo A-II. QTL analysis of aortic fatty streaks failed to reveal a significant locus.  相似文献   
86.
Genomic clones encoding two isozymes of aspartate aminotransferase (AAT) were isolated from an alfalfa genomic library and their DNA sequences were determined. The AAT1 gene contains 12 exons that encode a cytosolic protein expressed at similar levels in roots, stems and nodules. In nodules, the amount of AAT1 mRNA was similar at all stages of development, and was slightly reduced in nodules incapable of fixing nitrogen. The AAT1 mRNA is polyadenylated at multiple sites differing by more than 250 bp. The AAT2 gene contains 11 exons, with 5 introns located in positions identical to those found in animal AAT genes, and encodes a plastid-localized isozyme. The AAT2 mRNA is polyadenylated at a very limited range of sites. The transit peptide of AAT2 is encoded by the first two and part of the third exon. AAT2 mRNA is much more abundant in nodules than in other organs, and increases dramatically during the course of nodule development. Unlike AAT1, expression of AAT2 is significantly reduced in nodules incapable of fixing nitrogen. Phylogenetic analysis of deduced AAT proteins revealed 4 separate but related groups of AAT proteins; the animal cytosolic AATs, the plant cytosolic AATs, the plant plastid AATs, and the mitochondrial AATs.  相似文献   
87.
88.
89.
Climate change and urbanisation are among the most pervasive and rapidly growing threats to biodiversity worldwide. However, their impacts are usually considered in isolation, and interactions are rarely examined. Predicting species' responses to the combined effects of climate change and urbanisation, therefore, represents a pressing challenge in global change biology. Birds are important model taxa for exploring the impacts of both climate change and urbanisation, and their behaviour and physiology have been well studied in urban and non-urban systems. This understanding should allow interactive effects of rising temperatures and urbanisation to be inferred, yet considerations of these interactions are almost entirely lacking from empirical research. Here, we synthesise our current understanding of the potential mechanisms that could affect how species respond to the combined effects of rising temperatures and urbanisation, with a focus on avian taxa. We discuss potential interactive effects to motivate future in-depth research on this critically important, yet overlooked, aspect of global change biology. Increased temperatures are a pronounced consequence of both urbanisation (through the urban heat island effect) and climate change. The biological impact of this warming in urban and non-urban systems will likely differ in magnitude and direction when interacting with other factors that typically vary between these habitats, such as resource availability (e.g. water, food and microsites) and pollution levels. Furthermore, the nature of such interactions may differ for cities situated in different climate types, for example, tropical, arid, temperate, continental and polar. Within this article, we highlight the potential for interactive effects of climate and urban drivers on the mechanistic responses of birds, identify knowledge gaps and propose promising future research avenues. A deeper understanding of the behavioural and physiological mechanisms mediating species' responses to urbanisation and rising temperatures will provide novel insights into ecology and evolution under global change and may help better predict future population responses.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号