首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4597篇
  免费   498篇
  国内免费   4篇
  5099篇
  2021年   73篇
  2019年   47篇
  2018年   70篇
  2017年   54篇
  2016年   99篇
  2015年   115篇
  2014年   160篇
  2013年   195篇
  2012年   246篇
  2011年   255篇
  2010年   190篇
  2009年   131篇
  2008年   265篇
  2007年   239篇
  2006年   175篇
  2005年   180篇
  2004年   179篇
  2003年   161篇
  2002年   165篇
  2001年   98篇
  2000年   85篇
  1999年   90篇
  1998年   64篇
  1997年   54篇
  1996年   56篇
  1995年   48篇
  1994年   41篇
  1993年   46篇
  1992年   81篇
  1991年   86篇
  1990年   69篇
  1989年   73篇
  1988年   85篇
  1987年   53篇
  1986年   59篇
  1985年   51篇
  1984年   59篇
  1983年   49篇
  1982年   36篇
  1981年   39篇
  1980年   49篇
  1979年   49篇
  1978年   48篇
  1976年   45篇
  1975年   34篇
  1974年   34篇
  1973年   42篇
  1972年   33篇
  1970年   33篇
  1969年   33篇
排序方式: 共有5099条查询结果,搜索用时 15 毫秒
71.
All living organisms contain a unique class of molecular chaperones called 60?kDa heat shock proteins (HSP60 – also known as GroEL in bacteria). While some organisms contain more than one HSP60 or GroEL isoform, at least one isoform has always proven to be essential. Because of this, we have been investigating targeting HSP60 and GroEL chaperonin systems as an antibiotic strategy. Our initial studies focused on applying this antibiotic strategy for treating African sleeping sickness (caused by Trypanosoma brucei parasites) and drug-resistant bacterial infections (in particular Methicillin-resistant Staphylococcus aureus – MRSA). Intriguingly, during our studies we found that three known antibiotics – suramin, closantel, and rafoxanide – were potent inhibitors of bacterial GroEL and human HSP60 chaperonin systems. These findings prompted us to explore what other approved drugs, natural products, and known bioactive molecules might also inhibit HSP60 and GroEL chaperonin systems. Initial high-throughput screening of 3680 approved drugs, natural products, and known bioactives identified 161 hit inhibitors of the Escherichia coli GroEL chaperonin system (4.3% hit rate). From a purchased subset of 60 hits, 29 compounds (48%) re-confirmed as selective GroEL inhibitors in our assays, all of which were nearly equipotent against human HSP60. These findings illuminate the notion that targeting chaperonin systems might be a more common occurrence than we previously appreciated. Future studies are needed to determine if the in vivo modes of action of these approved drugs, natural products, and known bioactive molecules are related to GroEL and HSP60 inhibition.  相似文献   
72.
73.
74.
Scaffolds of agar and gelatin were developed using a novel entrapment method where agar and gelatin molecules mutually entrapped one another forming stable cell adhesive matrices. Glutaraldehyde was used as a crosslinking agent for gelatin. Three types of hybrid matrices were prepared using agar and gelatin in different proportions in the weight ratio of 1:1, 2:1, and 3:1. Surface characterization of dry scaffolds was carried out by scanning electron microscope. Swelling studies were carried out in phosphate buffer saline (PBS) at physiological pH 7.4. The integral stability of the scaffolds was evaluated by estimating the released disintegrated gelatin from them in PBS at pH 7.4. The attachment kinetics of the cells was evaluated by culturing mouse fibroblast cell line NIH 3T3 on films. The cytocompatibility of these matrices was determined by studying growth kinetics of NIH 3T3 cells on them and morphology of cells was observed through optical photographs taken at various days of culture. It was found that the matrices containing agar and gelatin in 2:1 weight ratio exhibited best growth kinetics. The results obtained from these studies have suggested that the above-described method is a cheap and easy way to fabricate agar-gelatin hybrid scaffolds to grow cells which can be used in various in vitro tissue engineering applications like screening of drugs.  相似文献   
75.
The role of transposable elements in sculpting the genome is well appreciated but remains poorly understood. Some organisms, such as humans, do not have active transposons; however, transposable elements were presumably active in their ancestral genomes. Of specific interest is whether the DNA surrounding the sites of transposon excision become recombinogenic, thus bringing about homologous recombination. Previous studies in maize and Drosophila have provided conflicting evidence on whether transposon excision is correlated with homologous recombination. Here we take advantage of an atypical Dissociation (Ds) element, a maize transposon that can be mobilized by the Ac transposase gene in Arabidopsis thaliana, to address questions on the mechanism of Ds excision. This atypical Ds element contains an adjacent 598 base pairs (bp) inverted repeat; the element was allowed to excise by the introduction of an unlinked Ac transposase source through mating. Footprints at the excision site suggest a micro-homology mediated non-homologous end joining reminiscent of V(D)J recombination involving the formation of intra-helix 3' to 5' trans-esterification as an intermediate, a mechanism consistent with previous observations in maize, Antirrhinum and in certain insects. The proposed mechanism suggests that the broken chromosome at the excision site should not allow recombinational interaction with the homologous chromosome, and that the linked inverted repeat should also be mobilizable. To test the first prediction, we measured recombination of flanking chromosomal arms selected for the excision of Ds. In congruence with the model, Ds excision did not influence crossover recombination. Furthermore, evidence for correlated movement of the adjacent inverted repeat sequence is presented; its origin and movement suggest a novel mechanism for the evolution of repeated elements. Taken together these results suggest that the movement of transposable elements themselves may not directly influence linkage. Possibility remains, however, for novel repeated DNA sequences produced as a consequence of transposon movement to influence crossover in subsequent generations.  相似文献   
76.
We propose a new elastic constitutive law for arterial tissue in which the limiting polymeric chain extensibility of both collagen and elastin fibres is accounted for. The elastic strain-energy function is separated additively into two parts: an isotropic contribution associated with the matrix (incorporating the elastin fibre network) and an anisotropic one associated with the collagen fibres. Information on the limiting extensibility in each case provides some mesoscopic input into the model. The (logarithm-based) model is compared with the Fung-Demiray exponential model and certain other recently proposed models. Some aspects of the elastic response under extension and inflation of a thin-walled circular cylindrical tube (the artery) are then examined and compared with the corresponding response of a rubber-like tube. We point out that our model, when both isotropic and anisotropic terms are included, can be developed to accommodate changing mechanical properties associated with degradation of the elastin and collagen by considering the material constants that define the limit of chain extensibility to evolve in time.  相似文献   
77.
The increased interest in the benefits of omega-3 fatty acids for human health has resulted in the commercial development of the dinoflagellate Crypthecodinium cohnii for production of docosahexaenoic acid (DHA). The growing market demand for DHA requires highly efficient, very large scale cultures of DHA. While the effects of hydrodynamic forces on dinoflagellates have been investigated for several decades, the majority of the work focused on the negative effects of oceanic turbulence on the population growth of environmentally important dinoflagellates. In contrast, significantly less is known on the effect of hydrodynamic forces encountered by algae in bioprocesses. Unlike other studies conducted on algae, this study employed a microfluidic, flow contraction device to evaluate the effect of transient hydrodynamic forces on C. cohnii cells. It was found that C. cohnii cells can sustain the energy dissipation rate of 5.8 x 10(7) W/m3 without lysis. However, an obvious sublethal effect, the loss of flagella, was observed at a lower level of 1.6 x 10(7) W/m3. Finally the cell-bubble interaction and the effect of bubble rupture were also explored to simulate the conditions of sparged bioreactors.  相似文献   
78.
79.
Xia YQ  Liu DQ  Bakhtiar R 《Chirality》2002,14(9):742-749
An online sample extraction chiral bioanalytical method was developed and validated for the quantification of terbutaline, a beta2-selective adrenoceptor agonist, spiked into human plasma by using two extraction columns and a chiral stationary phase (CSP) in conjunction with liquid chromatography tandem mass spectrometry (LC-MS/MS). In this method, two Oasis HLB extraction columns were used in parallel for plasma sample purification and a Chirobiotic T CSP was used for enantiomeric separation. Atmospheric pressure chemical ionization MS/MS was employed in multiple reaction monitoring mode for the detection and quantification. Subsequent to the addition of an internal standard solution, the plasma samples were directly injected onto the system for extraction and analysis. This method allowed the use of one of the extraction columns for purification while the other was being equilibrated. Hence, the time required for reconditioning the extraction columns did not contribute to the total analysis time per sample, which resulted in a shorter run time and higher throughput. A lower limit of quantification of 1.0 ng/mL was achieved using only 50 microliter of human plasma. The method was validated with a dynamic range of 1.0-200 ng/mL. The intra- and interday precision was no more than 11% CV and the assay accuracy was between 94-106%.  相似文献   
80.
The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein has been controversially implicated in the inherent resistance of HCV to interferon (IFN) antiviral therapy in clinical studies. In this study, the relationship between NS5A mutations and selection pressures before and during antiviral therapy and virologic response to therapy were investigated. Full-length NS5A clones were sequenced from 20 HCV genotype 1-infected patients in a prospective, randomized clinical trial of IFN induction (daily) therapy and IFN plus ribavirin combination therapy. Pretreatment NS5A nucleotide and amino acid phylogenies did not correlate with clinical IFN responses and domains involved in NS5A functions in vitro were all well conserved before and during treatment. A consensus IFN sensitivity-determining region (ISDR(237-276)) sequence associated with IFN resistance was not found, although the presence of Ala(245) within the ISDR was associated with nonresponse to treatment in genotype 1a-infected patients (P<0.01). There were more mutations in the 26 amino acids downstream of the ISDR required for PKR binding in pretreatment isolates from responders versus nonresponders in both HCV-1a- and HCV-1b-infected patients (P<0.05). In HCV-1a patients, more amino acid changes were observed in isolates from IFN-sensitive patients (P<0.001), and the mutations appeared to be concentrated in two variable regions in the C terminus of NS5A, that corresponded to the previously described V3 region and a new variable region, 310 to 330. Selection of pretreatment minor V3 quasispecies was observed within the first 2 to 6 weeks of therapy in responders but not nonresponders, whereas the ISDR and PKR binding domains did not change in either patient response group. These data suggest that host-mediated selective pressures act primarily on the C terminus of NS5A and that NS5A can perturb or evade the IFN-induced antiviral response using sequences outside of the putative ISDR. Mechanistic studies are needed to address the role of the C terminus of NS5A in HCV replication and antiviral resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号