首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   11篇
  166篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   9篇
  2012年   9篇
  2011年   17篇
  2010年   11篇
  2009年   8篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1971年   1篇
  1962年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
51.
The initiation of microtubule assembly within cells is guided by a cone shaped multi‐protein complex, γ‐tubulin ring complex (γTuRC) containing γ‐tubulin and atleast five other γ‐tubulin‐complex proteins (GCPs), i.e., GCP2, GCP3, GCP4, GCP5, and GCP6. The rim of γTuRC is a ring of γ‐tubulin molecules that interacts, via one of its longitudinal interfaces, with GCP2, GCP3, or GCP4 and, via other interface, with α/β?tubulin dimers recruited for the microtubule lattice formation. These interactions however, are not well understood in the absence of crystal structure of functional reconstitution of γTuRC subunits. In this study, we elucidate the atomic interactions between γ‐tubulin and GCP4 through computational techniques. We simulated two complexes of γ‐tubulin‐GCP4 complex (we called dimer1 and dimer2) for 25 ns to obtain a stable complex and calculated the ensemble average of binding free energies of ?158.82 and ?170.19 kcal/mol for dimer1 and ?79.53 and ?101.50 kcal/mol for dimer2 using MM‐PBSA and MM‐GBSA methods, respectively. These highly favourable binding free energy values points to very robust interactions between GCP4 and γ‐tubulin. From the results of the free‐energy decomposition and the computational alanine scanning calculation, we identified the amino acids crucial for the interaction of γ‐tubulin with GCP4, called hotspots. Furthermore, in the endeavour to identify chemical leads that might interact at the interface of γ‐tubulin‐GCP4 complex; we found a class of compounds based on the plant alkaloid, noscapine that binds with high affinity in a cavity close to γ‐tubulin‐GCP4 interface compared with previously reported compounds. All noscapinoids displayed stable interaction throughout the simulation, however, most robust interaction was observed for bromo‐noscapine followed by noscapine and amino‐noscapine. This offers a novel chemical scaffold for γ‐tubulin binding drugs near γ‐tubulin‐GCP4 interface. Proteins 2015; 83:827–843. © 2015 Wiley Periodicals, Inc.  相似文献   
52.
A Gram-positive, Micrococcus sp. strain PS-1 capable of utilizing phenylurea herbicide diuron as a sole carbon source at a high concentration (up to 250 ppm) was isolated from diuron storage site by selective enrichment study. The taxonomic characterization with 16S rRNA gene sequencing (1,477 bp) identified PS-1 as a member of Micrococcus sp. It was studied for the degradation of diuron and a range of its analogues (monuron, linuron, monolinuron, chlortoluron and fenuron). The shake flasks experiments demonstrated fast degradation of diuron (up to 96% at 250 ppm within 30 h incubation) with the addition of small quantity (0.01%) of non-ionic detergent. The relative degradation profile by the isolate was in the order of fenuron > monuron > diuron > linuron > monolinuron > chlortoluron. Further, the biochemical characterization of catabolic pathway by spectroscopic and chromatographic techniques demonstrated that the degradation proceeded via formation of dealkylated metabolites to form 3,4-dichloroaniline (3,4-DCA). It was the major metabolite formed, associated with profound increase in degradation kinetics in presence of appropriate additive.  相似文献   
53.
Genomic regions containing trinucleotide repeats (TNRs) are highly unstable, as the repeated sequences exhibit a high rate of mutational change, in which they undergo either a contraction or an expansion of repeat numbers. Although expansion of TNRs is associated with several human genetic diseases, the expansion mechanism is poorly understood. Extensive studies in model organisms have indicated that instability of TNRs occurs by several mechanisms, including replication slippage, DNA repair and recombination. In all models, the formation of secondary structures by disease-associated TNRs is a critical step in the mutation process. In this report, we demonstrate that TNRs and inverted repeats (IRs) both of which have the potential to form secondary structures in vivo, increase spontaneous unequal sister-chromatid exchange (SCE) in vegetatively growing yeast cells. Our results also show that TNR-mediated SCE events are independent of RAD50, MRE11 and RAD51, whereas IR-stimulated SCEs are dependent on the RAD52 epistasis-group genes. We propose that many TNR expansion mutations occur by SCE.  相似文献   
54.
Immunosensors, a type of affinity biosensor, are based on the binding interactions between an immobilized biomolecule (antibody/antigen) on the electronic transducer surface with the analyte of interest (antigen/antibody), resulting in a detectable signal. The sensor system takes advantage of the high selectivity provided by the molecular recognition characteristic of an antibody, which binds reversibly with a specific antigen. This review article presents the current status of immunosensors, highlighting their potential benefits and limitations for pesticide analysis. The basic criteria for generating specific antibodies against low-molecular-mass pesticides, which are usually nonimmunogenic in nature, are briefly discussed. The article also describes the fundamentals of important transducer technologies and their use in immunosensor development.  相似文献   
55.

Background

Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin, a muscle cytoskeletal protein. Utrophin is a homologue of dystrophin that can functionally compensate for its absence when expressed at increased levels in the myofibre, as shown by studies in dystrophin-deficient mice. Utrophin upregulation is therefore a promising therapeutic approach for DMD. The use of a small, drug-like molecule to achieve utrophin upregulation offers obvious advantages in terms of delivery and bioavailability. Furthermore, much of the time and expense involved in the development of a new drug can be eliminated by screening molecules that are already approved for clinical use.

Methodology/Principal Findings

We developed and validated a cell-based, high-throughput screening assay for utrophin promoter activation, and used it to screen the Prestwick Chemical Library of marketed drugs and natural compounds. Initial screening produced 20 hit molecules, 14 of which exhibited dose-dependent activation of the utrophin promoter and were confirmed as hits. Independent validation demonstrated that one of these compounds, nabumetone, is able to upregulate endogenous utrophin mRNA and protein, in C2C12 muscle cells.

Conclusions/Significance

We have developed a cell-based, high-throughput screening utrophin promoter assay. Using this assay, we identified and validated a utrophin promoter-activating drug, nabumetone, for which pharmacokinetics and safety in humans are already well described, and which represents a lead compound for utrophin upregulation as a therapy for DMD.  相似文献   
56.
Anti-tumor therapy with macroencapsulated endostatin producer cells   总被引:1,自引:0,他引:1  

Background  

Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors.  相似文献   
57.

Background

Majority of bladder cancer deaths are caused due to transitional cell carcinoma (TCC) which is the most prevalent and chemoresistant malignancy of urinary bladder. Therefore, we analyzed the role of Sperm associated antigen 9 (SPAG9) in bladder TCC.

Methodology and Findings

We examined SPAG9 expression and humoral response in 125 bladder TCC patients. Four bladder cancer cell lines were assessed for SPAG9 expression. In addition, we investigated the effect of SPAG9 ablation on cellular proliferation, cell cycle, migration and invasion in UM-UC-3 bladder cancer cells by employing gene silencing approach. Our SPAG9 gene and protein expression analysis revealed SPAG9 expression in 81% of bladder TCC tissue specimens. High SPAG9 expression (>60% SPAG9 positive cells) was found to be significantly associated with superficial non-muscle invasive stage (P = 0.042) and low grade tumors (P = 0.002) suggesting SPAG9 putative role in early spread and tumorigenesis. Humoral response against SPAG9 was observed in 95% of patients found positive for SPAG9 expression. All four bladder cancer cell lines revealed SPAG9 expression. In addition, SPAG9 gene silencing in UM-UC-3 cells resulted in induction of G0–G1 arrest characterized by up-regulation of p16 and p21 and consequent down-regulation of cyclin E, cyclin D and cyclin B, CDK4 and CDK1. Further, SPAG9 gene silencing also resulted in reduction in cellular growth, and migration and invasion ability of cancer cells in vitro.

Conclusions

Collectively, our data in clinical specimens indicated that SPAG9 is potential biomarker and therapeutic target for bladder TCC.  相似文献   
58.
59.
60.
Structural homologies among type I restriction-modification systems.   总被引:15,自引:4,他引:15       下载免费PDF全文
Structural homologies among different restriction systems of Escherichia coli and several Salmonella species have been investigated by immunological methods using antibodies prepared against two subunits of the E. coli K12 restriction enzyme, and by DNA hybridization experiments using different fragments of the E. coli K12 hsd genes as probes. The results with both techniques show a strong homology between the E. coli K12 and B restriction-modification systems, weaker but nevertheless marked homology between E. coli K12 and the Salmonella systems SB, SP, and SQ and, surprisingly, no homology between the E. coli K12 and A systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号