首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   28篇
  2023年   3篇
  2022年   8篇
  2021年   18篇
  2020年   8篇
  2019年   7篇
  2018年   20篇
  2017年   12篇
  2016年   12篇
  2015年   34篇
  2014年   27篇
  2013年   59篇
  2012年   52篇
  2011年   45篇
  2010年   27篇
  2009年   15篇
  2008年   29篇
  2007年   27篇
  2006年   18篇
  2005年   23篇
  2004年   7篇
  2003年   17篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1999年   1篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1986年   5篇
  1985年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有540条查询结果,搜索用时 31 毫秒
101.
102.
Nemorilla maculosa Meigen (Diptera: Tachinidae) is a solitary endoparasitoid of the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), a key pest of cowpea, Vigna unguiculata (L.) Walp. (Fabaceae) in Africa. A colony of N. maculosa, introduced for experimental purposes from Taiwan to the laboratories of the International Institute of Tropical Agriculture (IITA) in Benin, was used for our studies. Olfactory reponses of N. maculosa to leaves of infested or uninfested cowpea and yellow peabush, Sesbania cannabina (Retz.) Pers. (Fabaceae), and to M. vitrata larvae were evaluated in a four‐arm olfactometer. For all combinations of odor sources, responses between naïve and oviposition‐experienced female flies did not differ. Nemorilla maculosa females were attracted by odors from uninfested leaves of yellow peabush and flowers of cowpea when compared with clean air, and they were attracted to plants damaged by M. vitrata with larvae removed. However, the female fly did not discriminate between odors from infested and uninfested plants. The parasitic fly N. maculosa proved well able to use volatile compounds from various host plants (peabush and cowpea) to locate its host, with a more pronounced attraction by the combination of host larvae and infested host plant parts. These findings are discussed in light of the prospective use of N. maculosa as a biological control agent against the legume pod borer.  相似文献   
103.
104.
Tail-anchored (TA) proteins are a special class of membrane proteins that carry out vital functions in all living cells. Targeting mechanisms of TA proteins are investigated as the best example for post-translational protein targeting in yeast. Of the several mechanisms, Guided Entry of Tail-anchored protein (GET) pathway plays a major role in TA protein targeting. Many in silico and in vivo analyses are geared to identify TA proteins and their targeting mechanisms in different systems including Arabidopsis thaliana. Yet, crop plants that grow in specific and/or different conditions are not investigated for the presence of TA proteins and GET pathway. This study majorly investigates GET pathway in two crop plants, Oryza sativa subsp. Indica and Solanum tuberosum, through detailed in silico analysis. 508 and 912 TA proteins are identified in Oryza sativa subsp. Indica and Solanum tuberosum respectively and their localization with respect to endoplasmic reticulum (ER), mitochondria, and chloroplast has been delineated. Similarly, the associated GET proteins are identified (Get1, Get3 and Get4) and their structural inferences are elucidated using homology modelling. Get3 models are based on yeast Get3. The cytoplasmic Get3 from O. sativa is identified to be very similar to yeast Get3 with conserved P-loop and TA binding groove. Three cytoplasmic Get3s are identified for S. tuberosum. Taken together, this is the first study to identify TA proteins and GET components in Oryza sativa subsp. Indica and Solanum tuberosum, forming the basis for any further experimental characterization of TA targeting and GET pathway mechanisms in crop plants.  相似文献   
105.
106.
Vanadium compounds have been shown to cause a variety of biological and metabolic effects including inhibition of certain enzymes, alteration of contractile function, and as an insulin like regulator of glucose metabolism. However, the influence of vanadium on metabolic and ionic changes in hearts remains to be understood. In this study we have examined the influence of vanadate on glucose metabolism and sodium transport in isolated perfused rat hearts. Hearts were perfused with 10 mM glucose and varying vanadate concentrations (0.7100 M) while changes in high energy phosphates (ATP and phosphocreatine (PCr)), intracellular pH, and intracellular sodium were monitored using 31P and 23Na NMR spectroscopy. Tissue lactate, glycogen, and (Na+, K+)-ATPase activity were also measured using biochemical assays. Under baseline conditions, vanadate increased tissue glycogen levels two fold and reduced (Na+, K+)-ATPase activity. Significant decreases in ATP and PCr were observed in the presence of vanadate, with little change in intracellular pH. These changes under baseline conditions were less severe when the hearts were perfused with glucose, palmitate and b-hydroxybutyrate. During ischemia vanadate did not limit the rise in intracellular sodium, but slowed sodium recovery on reperfusion. The presence of vanadate during ischemia resulted in attenuation of acidosis, and reduced lactate accumulation. Reperfusion in the presence of vanadate resulted in a slower ATP recovery, while intracellular pH and PCr recovery was not affected. These results indicate that vanadate alters glucose utilization and (Na+, K+)-ATPase activity and thereby influences the response of the myocardium to an ischemic insult.  相似文献   
107.
South Asian countries will have to double their food production by 2050 while using resources more efficiently and minimizing environmental problems. Transformative management approaches and technology solutions will be required in the major grain‐producing areas that provide the basis for future food and nutrition security. This study was conducted in four locations representing major food production systems of densely populated regions of South Asia. Novel production‐scale research platforms were established to assess and optimize three futuristic cropping systems and management scenarios (S2, S3, S4) in comparison with current management (S1). With best agronomic management practices (BMPs), including conservation agriculture (CA) and cropping system diversification, the productivity of rice‐ and wheat‐based cropping systems of South Asia increased substantially, whereas the global warming potential intensity (GWPi) decreased. Positive economic returns and less use of water, labor, nitrogen, and fossil fuel energy per unit food produced were achieved. In comparison with S1, S4, in which BMPs, CA and crop diversification were implemented in the most integrated manner, achieved 54% higher grain energy yield with a 104% increase in economic returns, 35% lower total water input, and a 43% lower GWPi. Conservation agriculture practices were most suitable for intensifying as well as diversifying wheat–rice rotations, but less so for rice–rice systems. This finding also highlights the need for characterizing areas suitable for CA and subsequent technology targeting. A comprehensive baseline dataset generated in this study will allow the prediction of extending benefits to a larger scale.  相似文献   
108.
The isolation and characterization of glucose oxidase-negative (gox -) mutants of Phanerochaete chrysosporium, is described. These mutants are deficient not only in their ability to produce hydrogen peroxide (H2O2) but also in lignin degradation (2-14C-synthetic lignin14CO2), ligninase and peroxidase activities, decolorization of the dye poly-R 481, and production of ethylene from -oxo--methylthiobutyric acid (KTBA). The gox - mutants retained, albeit at a lower level, the capacity to produce veratryl alcohol, a typical secondary metabolite, and produced conidia at a level comparable to that of the wild type. The addition of ligninase and/or glucose oxidase to a gox - mutant (GOX-10) did not enhance its capacity to degrade lignin. The Gox+ revertant strains regained glucose oxidase activity, the ability to degrade lignin, as well as the other characteristics that were missing in the gox - mutants. The results suggest that the genetic lesion in these mutants affects the regulation of a set of secondary metabolic characteristics.Abbreviations Gox glucose oxidase - KTBA -oxo--methylthiobutyric acid Journal article no. 11740 from the Michigan Agricultural Experiment Station  相似文献   
109.
and 1986. The surface topography of a monogenean Heterapta chorinemi from the gills of Scomberoides commersonianus. International Journal for Parasitology 16: 595–600. The dorsal and ventral surfaces of H. chorinemi bear microvilli and boss-like structures. These may increase the surface area for respiratory gaseous exchange and absorption of nutrients from the surrounding medium. Uniciliated sensory endings, presumably rheoreceptors, are present over the entire surface whereas non-ciliated structures, possibly mechanoreceptors, are present only on the ventral surface of the haptor. The haptor possesses 6–10 pairs of pincer-type clamps and 30–40 pairs of open sucker-type clamps with scleritized jaws. The common genital atrium is situated on the ventral surface, the vaginal pore opens on the dorsal surface and the mouth is subterminal as described in previous light microscope studies.  相似文献   
110.
1,4,7-Triazacyclononane-N,N',N'-tris(methylenephosphonate monoethylester) (NOTPME) has been synthesized, characterized and analyzed for use as a 31P NMR indicator of intracellular Mg2+ and Zn2+ ions. The 31P NMR spectrum of this chelate in the presence of metal ions shows characteristic resonances for the free chelate, Mg(NOTPME)-, Zn(NOTPME)-, and Ca(NOTPME)-. The Kd values indicate that this chelate has a 10-fold higher affinity for Mg2+ than for Ca2+ at physiological pH values. In the presence of Mg2+, NOTPME is readily loaded into red blood cells. A 31P NMR spectrum of red cells taken after several washings shows resonances characteristic of entrapped NOTPME and the Mg(NOTPME)- complex, the relative areas of which report an intracellular free Mg2+ concentration of 0.32 mM. The 31P chemical shifts of the free chelate and its metal complexes are far downfield from the typical phosphorus-containing metabolites observed in biological systems, thus making it possible to monitor intracellular cation concentrations and cell energetics simultaneously.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号