首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   6篇
  80篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   6篇
  2013年   11篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
11.
The objective of this study was to synthesize and characterize novel polyurethane (PU)-nanofiber coated with l-arginine by electrospinning technique. This study determined whether l-arginine conjugated with PU-nanofiber could stimulate cell proliferation and prevent H2O2-induced cell death in satellite cells co-cultured with fibroblasts isolated from Hanwoo (Korean native cattle). Our results showed that l-arginine conjugated with PU nanofiber could reduce cytotoxicity of co-cultured satellite cells. Protein expression levels of bcl-2 were significantly upregulated whereas those of caspase-3 and caspase-7 were significantly downregulated in co-culture of satellite cells compared to those of monoculture cells after treatment with PU-nanofiber coated with l-arginine and which confirmed by Confocal microscope. These results suggest that co-culture of satellite cells with fibroblasts might be able to counter oxidative stress through translocation/penetration of antioxidant, collagen, and molecules secreted to satellite cells. Therefore, this nanofiber might be useful as a wound dressing in animals to counter oxidative stresses.  相似文献   
12.
Technological advancements combined with materials research have led to the generation of enormous types of novel substrates and materials for use in various biological/medical, energy, and environmental applications. Lately, the embedding of biomolecules in novel and/or advanced materials (e.g., metal-organic frameworks (MOFs), nanoparticles, hydrogels, graphene, and their hybrid composites) has become a vital research area in the construction of an innovative platform for various applications including sensors (or biosensors), biofuel cells, and bioelectronic devices. Due to the intriguing properties of MOFs (e.g., framework architecture, topology, and optical properties), they have contributed considerably to recent progresses in enzymatic catalysis, antibody-antigen interactions, or many other related approaches. Here, we aim to describe the different strategies for the design and synthesis of diverse biomolecule-embedded MOFs for various sensing (e.g., optical, electrochemical, biological, and miscellaneous) techniques. Additionally, the benefits and future prospective of MOFs-based biomolecular immobilization as an innovative sensing platform are discussed along with the evaluation on their performance to seek for further development in this emerging research area.  相似文献   
13.
Apoptosis plays an important role in determining efficacies of bioreactors employing hybridoma cells. Exposure to a 42°C shock for 1 h increased the apoptosis extent (DNA fragmentation) by 32% in CC9C10 hybridoma. Further, glutamine at 2 mM decreased temperature-induced apoptosis by about 20%.  相似文献   
14.
15.
The dissolution and subsequent oral bioavailability of acyclovir (ACY) is limited by its poor aqueous solubility. An attempt has been made in this work to provide mechanistic insights into the solubility enhancement and dissolution of ACY by using the water-soluble carrier polyethylene glycol 6000 (PEG6000). Solid dispersions with varying ratios of the drug (ACY) and carrier (PEG6000) were prepared and evaluated by phase solubility, in vitro release studies, kinetic analysis, in situ perfusion, and in vitro permeation studies. Solid state characterization was done by powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) analysis, and surface morphology was assessed by polarizing microscopic image analysis, scanning electron microscopy, atomic force microscopy, and nuclear magnetic resonance analysis. Thermodynamic parameters indicated the solubilization effect of the carrier. The aqueous solubility and dissolution of ACY was found to be higher in all samples. The findings of XRD, DSC, FTIR and NMR analysis confirmed the formation of solid solution, crystallinity reduction, and the absence of interaction between the drug and carrier. SEM and AFM analysis reports ratified the particle size reduction and change in the surface morphology in samples. The permeation coefficient and amount of ACY diffused were higher in samples in comparison to pure ACY. Stability was found to be higher in dispersions. The results suggest that the study findings provided clear mechanical insights into the solubility and dissolution enhancement of ACY in PEG6000, and such findings could lay the platform for resolving the poor aqueous solubility issues in formulation development.  相似文献   
16.
Ascorbic acid (20.4 g l-1 in 50 h) was synthesized directly from glucose by Xanthomonas campestris as an adaptive response to induced free-radicals through HOCl treatment. Identity of ascorbic acid was confirmed through IR and NMR spectroscopy.  相似文献   
17.
A mouse-mouse hybridoma was grown in serum-free medium supplemented with bovine milk or colostrum. Bovine colostrum supported growth of the hybridoma whereas bovine milk alone did not support cellular proliferation. For growth in medium supplemented with colostrum, the maximum cell concentration achieved was 1.4 x 10(6) cells/mL in 2.2% colostrum, which is 44% of that obtained in 9% serum. When cells were grown in media containing milk and low amounts of serum (<1%) the maximum cell concentration in 2.2% milk with 0.4% serum was 2 x 10(6) cells/ml, whereas it was only 0.2 x 10(6) cells/ml and 1.3 x 10(6) cells/ml in 2.2% milk alone and 0.4% serum alone, respectively. Similar behavior was observed for growth in media containing colostrum and low amounts of serum. The monoclonal antibody production in media containing combinations of serum and milk or colostrum was comparable to that obtained in media with higher serum concentrations. Experiments performed with conditioned media suggest that the rapid decrease in viability, after the maximum cell concentration has been reached, is partially due to the presence of some inhibitory components generated during the cell culture rather than due to depletion of some serum components.  相似文献   
18.
Tail-anchored (TA) proteins are a special class of membrane proteins that carry out vital functions in all living cells. Targeting mechanisms of TA proteins are investigated as the best example for post-translational protein targeting in yeast. Of the several mechanisms, Guided Entry of Tail-anchored protein (GET) pathway plays a major role in TA protein targeting. Many in silico and in vivo analyses are geared to identify TA proteins and their targeting mechanisms in different systems including Arabidopsis thaliana. Yet, crop plants that grow in specific and/or different conditions are not investigated for the presence of TA proteins and GET pathway. This study majorly investigates GET pathway in two crop plants, Oryza sativa subsp. Indica and Solanum tuberosum, through detailed in silico analysis. 508 and 912 TA proteins are identified in Oryza sativa subsp. Indica and Solanum tuberosum respectively and their localization with respect to endoplasmic reticulum (ER), mitochondria, and chloroplast has been delineated. Similarly, the associated GET proteins are identified (Get1, Get3 and Get4) and their structural inferences are elucidated using homology modelling. Get3 models are based on yeast Get3. The cytoplasmic Get3 from O. sativa is identified to be very similar to yeast Get3 with conserved P-loop and TA binding groove. Three cytoplasmic Get3s are identified for S. tuberosum. Taken together, this is the first study to identify TA proteins and GET components in Oryza sativa subsp. Indica and Solanum tuberosum, forming the basis for any further experimental characterization of TA targeting and GET pathway mechanisms in crop plants.  相似文献   
19.
20.
Acute and chronic forms of inflammation are known to affect liver responses and susceptibility to disease and injury. Furthermore, intestinal microbiota has been shown critical in mediating inflammatory host responses in various animal models. Using C. rodentium, a known enteric bacterial pathogen, we examined liver responses to gastrointestinal infection at various stages of disease pathogenesis. For the first time, to our knowledge, we show distinct liver pathology associated with enteric infection with C. rodentium in C57BL/6 mice, characterized by increased inflammation and hepatitis index scores as well as prominent periportal hepatocellular coagulative necrosis indicative of thrombotic ischemic injury in a subset of animals during the early course of C. rodentium pathogenesis. Histologic changes in the liver correlated with serum elevation of liver transaminases, systemic and liver resident cytokines, as well as signal transduction changes prior to peak bacterial colonization and colonic disease. C. rodentium infection in C57BL/6 mice provides a potentially useful model to study acute liver injury and inflammatory stress under conditions of gastrointestinal infection analogous to enteropathogenic E. coli infection in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号