首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2232篇
  免费   137篇
  2024年   5篇
  2023年   20篇
  2022年   30篇
  2021年   59篇
  2020年   29篇
  2019年   42篇
  2018年   61篇
  2017年   49篇
  2016年   68篇
  2015年   104篇
  2014年   101篇
  2013年   154篇
  2012年   185篇
  2011年   158篇
  2010年   113篇
  2009年   96篇
  2008年   154篇
  2007年   136篇
  2006年   117篇
  2005年   120篇
  2004年   85篇
  2003年   75篇
  2002年   87篇
  2001年   31篇
  2000年   24篇
  1999年   23篇
  1998年   32篇
  1997年   16篇
  1996年   13篇
  1995年   14篇
  1994年   8篇
  1993年   9篇
  1992年   13篇
  1991年   14篇
  1990年   12篇
  1989年   7篇
  1988年   8篇
  1987年   12篇
  1986年   11篇
  1985年   14篇
  1984年   7篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1969年   3篇
排序方式: 共有2369条查询结果,搜索用时 31 毫秒
901.
The primary culture of neonatal mice cardiomyocyte model enables researchers to study and understand the morphological, biochemical, and electrophysiological characteristics of the heart, besides being a valuable tool for pharmacological and toxicological studies. Because cardiomyocytes do not proliferate after birth, primary myocardial culture is recalcitrant. The present study describes an improved method for rapid isolation of cardiomyocytes from neonatal mice, as well as the maintenance and propagation of such cultures for the long term. Immunocytochemical and gene expression data also confirmed the presence of several cardiac markers in the beating cells during the long-term culture condition used in this protocol. The whole culture process can be effectively shortened by reducing the enzyme digestion period and the cardiomyocyte enrichment step. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
902.
903.
Recent progress in nanotechnology has triggered the site specific drug/gene delivery research and gained wide acknowledgment in contemporary DNA therapeutics. Amongst various organs, liver plays a crucial role in various body functions and in addition, the site is a primary location of metastatic tumor growth. In past few years, a plethora of nano-vectors have been developed and investigated to target liver associated cells through receptor mediated endocytosis. This emerging paradigm in cellular drug/gene delivery provides promising approach to eradicate genetic as well as acquired diseases affecting the liver. The present review provides a comprehensive overview of potential of various delivery systems, viz., lipoplexes, liposomes, polyplexes, nanoparticles and so forth to selectively relocate foreign therapeutic DNA into liver specific cell type via the receptor mediated endocytosis. Various receptors like asialoglycoprotein receptors (ASGP-R) provide unique opportunity to target liver parenchymal cells. The results obtained so far reveal tremendous promise and offer enormous options to develop novel DNA-based pharmaceuticals for liver disorders in near future.  相似文献   
904.
Increased molecular damage and heterogeneity as the basis of aging   总被引:2,自引:0,他引:2  
Aging at the molecular level is characterized by the progressive accumulation of molecular damage. The sources of damage act randomly through environmental and metabolically generated free radicals, through spontaneous errors in biochemical reactions, and through nutritional components. However, damage to a macromolecule may depend on its structure, localization and interactions with other macromolecules. Damage to the maintenance and repair pathways comprising homeodynamic machinery leads to age-related failure of homeodynamics, increased molecular heterogeneity, altered cellular functioning, reduced stress tolerance, diseases and ultimate death. Novel approaches for testing and developing effective means of intervention, prevention and modulation of aging involve means to minimize the occurrence and accumulation of molecular damage. Mild stress-induced hormesis by physical, biological and nutritional methods, including hormetins, represents a promising strategy for achieving healthy aging and for preventing age-related diseases.  相似文献   
905.
Death-associated protein kinase 1 (DAPK-1) is a multidomain protein kinase with diverse roles in autophagic, apoptotic and survival pathways. Bioinformatic screens were used to identify a small internal mRNA from the DAPK-1 locus (named s-DAPK-1). This encodes a 295 amino acid polypeptide encompassing part of the ankyrin-repeat domain, the P-loop motifs, part of the cytoskeletal binding domain of DAPK-1, and a unique C-terminal 'tail' extension not present in DAPK-1. Expression of s-DAPK-1 mRNA was detected in a panel of normal human tissues as well as primary colorectal cancers, indicating that its expression occurs in vivo. s-DAPK-1 gene transfection into cells produces two protein products: one with a denatured mass of 44 kDa, and a smaller product of 40 kDa. Double alanine mutation of the C-terminal tail extension of s-DAPK-1 (Gly296/Arg297) prevented production of the 40 kDa fragment, suggesting that the smaller product is generated by in vivo proteolytic processing. The s-DAPK-1 gene cannot substitute for full-length DAPK-1 in an mitogen-activated protein kinase kinase/extracellular signal-regulated kinase-dependent apoptotic transfection assay. However, the transfection of s-DAPK-1 was able to mimic full-length DAPK-1 in the induction of membrane blebbing. The 44 kDa protease-resistant mutant s-DAPK-1G296A/R297A had very low activity in membrane blebbing, whereas the 40 kDa s-DAPK-1Deltatail protein exhibited the highest levels of membrane blebbing. Deletion of the tail extension of s-DAPK-1 increased its half-life, shifted the equilibrium of the protein from cytoskeletal to soluble cytosolic pools, and altered green fluorescent protein-tagged s-DAPK-1 protein localization as observed by confocal microscopy. These data highlight the existence of an alternative product of the DAPK-1 locus, and suggest that proteolytic removal of the C-terminal tail of s-DAPK-1 is required to stimulate maximally its membrane-blebbing function.  相似文献   
906.

Background  

The aging of reproductive organs is not only a major social issue, but of special interest in aging research. A long-standing view of 'immortal germ line versus mortal soma' poses an important question of whether the reproductive tissues age in similar ways to the somatic tissues. As a first step to understand this phenomenon, we examine global changes in gene expression patterns by DNA microarrays in ovaries and testes of C57BL/6 mice at 1, 6, 16, and 24 months of age. In addition, we compared a group of mice on ad libitum (AL) feeding with a group on lifespan-extending 40% calorie restriction (CR).  相似文献   
907.
908.
909.
The elemental composition (surface adsorbed and internalized fraction of Cu, Mo and P) in marine phytoplankton was first examined in cultures of the diatom Phaeodactylum tricornutum which were exposed to various levels of Cu concentrations ranging from 0.25 to 16 μmol/L with equivalent free [Cu2+] concentrations of 0.4–26 nmol/L. We observed an acceleration of algal growth rates (20–40%) with increasing ambient Cu levels, as well as slightly increased levels of internalized Cu in cells (2–13 × 10?18 mol/cell) although cellular Cu mostly accumulated onto the cell surface (>50% of the total: intracellular + surface adsorbed). In particular, we documented for the first time that the elemental composition (Mo and P) in algal cells varies dynamically in response to increased Cu levels: (1) Cellular P, predominantly in the intracellular compartment (>95%), shows with a net consumption as indicated by a gradual decrease with increasing [Cu2+] (120→50 × 10?15 mol P/cell) probably due to the fact that P, a backbone bioelement, is largely required in forming biological compartments such as cell membranes; and (2) cellular Mo, predominantly encountered in the intracellular compartment, showed up to tenfold increase in concentration in the cultures exposed to Cu, with a peak accumulation of 1.1 × 10?18 mol Mo/cell occurring in the culture exposed to [Cu2+] at 3.7 nmol/L. Such a net cellular Mo accumulation suggests that Mo might be specifically required in biological processes, probably playing a counteracting role against Cu.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号