首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2155篇
  免费   136篇
  2024年   5篇
  2023年   19篇
  2022年   25篇
  2021年   57篇
  2020年   29篇
  2019年   42篇
  2018年   62篇
  2017年   49篇
  2016年   65篇
  2015年   103篇
  2014年   99篇
  2013年   149篇
  2012年   184篇
  2011年   154篇
  2010年   112篇
  2009年   96篇
  2008年   147篇
  2007年   130篇
  2006年   115篇
  2005年   119篇
  2004年   83篇
  2003年   76篇
  2002年   82篇
  2001年   30篇
  2000年   23篇
  1999年   18篇
  1998年   31篇
  1997年   14篇
  1996年   13篇
  1995年   14篇
  1994年   8篇
  1993年   10篇
  1992年   12篇
  1991年   13篇
  1990年   10篇
  1989年   6篇
  1988年   7篇
  1987年   9篇
  1986年   8篇
  1985年   12篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1969年   1篇
排序方式: 共有2291条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
995.
The studies into the pathophysiology of viral miRNAs are still in infancy; the interspecies regulation at the miRNA level fuels the spark of the investigation into the repertoire of virus–host interactions. Reports pertaining to the viral miRNAs role in modulating/evading the host immune response are surging up; we initiated this in silico study to speculate the role of human cytomegalovirus (HCMV)-encoded miRNAs on human antiviral mechanisms such as apoptosis and autophagy. The results indicate that both the above mechanisms were targeted by the HCMV miRNAs, located in the unique long region of the HCMV genome. The proapoptotic genes MOAP1, PHAP, and ERN1 are identified to be the potential targets for the miR-UL70-3p and UL148D, respectively. The ERN1 gene plays a role in the initiation of Endoplasmic reticulum stress-induced apoptosis as well as autophagosome formation. This study shows that HCMV employs its miRNA repertoire for countering the cellular apoptosis and autophagy, particularly the mitochondrial-dependent intrinsic pathway of apoptosis. In addition, the homology studies reveal no HCMV miRNA bears sequence homology with human miRNAs.  相似文献   
996.
997.
998.
Background: The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. Objective: The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. Materials and Methods: The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. Results: The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. Conclusion: The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates.  相似文献   
999.
Bacterial meningitis occurs when bloodborne pathogens invade and penetrate the blood-brain barrier (BBB), provoking inflammation and disease. Group B Streptococcus (GBS), the leading cause of neonatal meningitis, can enter human brain microvascular endothelial cells (hBMECs), but the host response to intracellular GBS has not been characterized. Here we sought to determine whether antibacterial autophagy, which involves selective recognition of intracellular organisms and their targeting to autophagosomes for degradation, is activated in BBB endothelium during bacterial infection. GBS infection resulted in increased punctate distribution of GFP-microtubule-associated protein 1 light chain 3 (LC3) and increased levels of endogenous LC3-II and p62 turnover, two hallmark indicators of active autophagic flux. Infection with GBS mutants revealed that bacterial invasion and the GBS pore-forming β-hemolysin/cytolysin (β-h/c) trigger autophagic activation. Cell-free bacterial extracts containing β-h/c activity induced LC3-II conversion, identifying this toxin as a principal provocative factor for autophagy activation. These results were confirmed in vivo using a mouse model of GBS meningitis as infection with WT GBS induced autophagy in brain tissue more frequently than a β-h/c-deficient mutant. Elimination of autophagy using Atg5-deficient fibroblasts or siRNA-mediated impairment of autophagy in hBMECs led to increased recovery of intracellular GBS. However, electron microscopy revealed that GBS was rarely found within double membrane autophagic structures even though we observed GBS-LC3 co-localization. These results suggest that although autophagy may act as a BBB cellular defense mechanism in response to invading and toxin-producing bacteria, GBS may actively thwart the autophagic pathway.  相似文献   
1000.
Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3′,5′-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 105 GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces “molecule noise.” Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号