首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3440篇
  免费   194篇
  3634篇
  2024年   7篇
  2023年   32篇
  2022年   48篇
  2021年   86篇
  2020年   48篇
  2019年   63篇
  2018年   99篇
  2017年   79篇
  2016年   92篇
  2015年   157篇
  2014年   164篇
  2013年   228篇
  2012年   294篇
  2011年   230篇
  2010年   160篇
  2009年   151篇
  2008年   226篇
  2007年   184篇
  2006年   173篇
  2005年   179篇
  2004年   128篇
  2003年   111篇
  2002年   115篇
  2001年   55篇
  2000年   43篇
  1999年   37篇
  1998年   39篇
  1997年   18篇
  1996年   18篇
  1995年   24篇
  1994年   12篇
  1993年   20篇
  1992年   23篇
  1991年   28篇
  1990年   27篇
  1989年   28篇
  1988年   17篇
  1987年   23篇
  1986年   29篇
  1985年   19篇
  1984年   10篇
  1983年   16篇
  1982年   12篇
  1981年   17篇
  1980年   9篇
  1979年   6篇
  1978年   7篇
  1977年   13篇
  1976年   6篇
  1974年   5篇
排序方式: 共有3634条查询结果,搜索用时 15 毫秒
91.
The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use neural networks with radial basis functions (RBFs) for prediction with dense molecular markers. We illustrate the use of the linear Bayesian LASSO regression model and of two non-linear regression models, reproducing kernel Hilbert spaces (RKHS) regression and radial basis function neural networks (RBFNN) on simulated data and real maize lines genotyped with 55,000 markers and evaluated for several trait-environment combinations. The empirical results of this study indicated that the three models showed similar overall prediction accuracy, with a slight and consistent superiority of RKHS and RBFNN over the additive Bayesian LASSO model. Results from the simulated data indicate that RKHS and RBFNN models captured epistatic effects; however, adding non-signal (redundant) predictors (interaction between markers) can adversely affect the predictive accuracy of the non-linear regression models.  相似文献   
92.
Antioxidant and antimicrobial activities of nutmeg (Myristica fragrans Houtt) seed extracts were evaluated. Seeds were extracted with acetone, ethanol, methanol, butanol and water. All the extracts have shown significant antioxidant and antimicrobial activities against the tested microorganisms. Among all extracts, acetone extract has shown the highest antioxidant activity. The acetone extract showed 93.12 ± 1.48 mg gallic acid equivalents (GAE)/100 g dry weight total phenolic content, DPPH scavenging activity of 63.04 ± 1.56%, chelating activity of 64.11 ± 2.21% and 74.36 ± 1.94% inhibition of β-carotene bleaching, at 1 mg/mL extract concentration. Out of all extracts, acetone extract was able to exert antimicrobial activity against all tested bacteria and fungi. Acetone extract has shown the strongest antibacterial and antifungal activity with Staphylococcus aureus (13.8 ± 0.42 mm) and Aspergillus niger (14.4 ± 0.37 mm), respectively. GC–MS analysis of acetone extract has revealed the presence of 32 compounds of extract representing 99.49%. Sabinene (28.61%) has shown the highest occurrence in the extract. β-Pinene (10.26), α-pinene (9.72), myristicin (4.30%), isoeugenol (2.72%), p-cymene (1.81%), carvacrol (1.54%), eugenol (0.89%) and β-caryophellene (0.82%) were reported as possible contributor for antioxidant and antimicrobial activity of nutmeg.  相似文献   
93.
PGI is a housekeeping gene encoding phosphoglucose isomerase (PGI) a glycolytic enzyme that also functions as a cytokine (autocrine motility factor (AMF)/neuroleukin/maturation factor) upon secretion from the cell and binding to its 78 kDa seven-transmembrane domain receptor (gp78/AMF-R). PGI contains a CXXC motif, characteristic of redox proteins and possibly evolutionarily related to the CC and CXC motif of the chemokine gene family. Using site-directed mutagenesis, single- and double-deletion (CXC, CC) mutants were created by deleting amino acids 331 and 332 of human PGI, respectively. The mutant proteins lost their enzymatic activity; however, neither of the deletions augmented the proteins' binding affinity to the receptor and all maintained cytokine function. The results demonstrate that the enzymatic activity of PGI is not essential for either receptor binding or cytokine function of human PGI.  相似文献   
94.
95.
Proteins play a crucial role in the biomineralization of hard tissues such as eggshells. We report here the purification, characterization, and in vitro mineralization studies of a peptide, pelovaterin, extracted from eggshells of a soft-shelled turtle. It is a glycine-rich peptide with 42 amino acid residues and three disulfide bonds. When tested in vitro, the peptide induced the formation of a metastable vaterite phase. The floret-shaped morphology formed at a lower concentration ( approximately 1 microM) was transformed into spherical particles at higher concentrations (>500 microM). The solution properties of the peptide are investigated by circular dichroism (CD), fluorescence emission spectroscopy, and dynamic light scattering (DLS) experiments. The conformation of pelovaterin changed from an unordered state at a low concentration to a beta-sheet structure at high concentrations. Fluorescence emission studies indicated that the quantum yield is significantly decreased at higher concentrations, accompanied by a blue shift in the emission maximum. At higher concentrations a red-edge excitation shift was observed, indicating the restricted mobility of the peptide. On the basis of these observations, we discuss the presence of a peptide concentration-dependent monomer-multimer equilibrium in solution and its role in controlling the nucleation, growth, and morphology of CaCO(3) crystals. This is the first peptide known to induce the nucleation and stabilization of the vaterite phase in solution.  相似文献   
96.
As a first step in determining the mechanism of action of specific fatty acids on immunological function of macrophages, a comparative study of the effect of long-chain polyunsaturated fatty acids (PUFA) in the medium was conducted in two macrophage cell lines, J774A.1 and WEHI-3. The baseline fatty-acid profiles of the two cell lines differed in the % distribution of saturated (SFA) and unsaturated fatty acids (UFA). J774A.1 cells had a higher % of SFA (primarily palmitic acid) than WEHI-3 cells. Conversely, WEHI-3 cells had a higher % of UFA (primarily oleic acid) than J774A.1 cells. Neither cell line had detectable amounts of alpha-linolenic acid (ALA) or eicosapentaenoic acid (EPA). The most abundant polyunsaturated fatty acid in both cells lines was arachidonic acid (AA). The efficiency of transport of fatty acids from the medium to the macrophages by two delivery vehicles (BSA complexes and ethanolic suspensions) was compared. Overall, fatty acids were transported satisfactorily by both delivery systems. Alpha-linolenic acid and doscosahexenoic acid (DHA) were transported more efficiently by the ethanolic suspension system. Linoleic acid (LA) was taken up more completely than ALA, and DHA was taken up more completely than EPA by both cell cultures and delivery systems. A dose-response effect was demonstrated for LA, ALA, EPA and DHA in both J774A.1 and WEHI-3 cells. Addition of polyunsaturated fatty acids (PUFA) to the cell cultures modified the total lipid fatty acid composition of the cells. The presence of ALA in the culture medium resulted in a significant decrease in AA in both cell lines. The omega-3/omega-6 fatty acid ratio (omega-3/omega-6), polyunsaturated/saturated fatty acid ratio (P/S), and unsaturation index (UI) increased directly with the amount of PUFA and omega-3 fatty acid provided in the medium. The results indicate that the macrophage cell lines have similar, but not identical, fatty acid profiles that may be the result of differences in fatty acid metabolism. These distinctions could in turn produce differences in immunological function. The ethanol fatty-acid delivery system, when compared with the fatty acid-BSA complex system, is preferable for measurement of dose-response effects, because the cellular fatty acid content increased in proportion to the amount of fatty acid provided in the medium. Similar dose-response results were observed in a previous in vivo study using flaxseed, rich in ALA, as a source of PUFA.  相似文献   
97.
Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients.  相似文献   
98.
The assembly of AMPA-type glutamate receptors (AMPARs) into distinct ion channel tetramers ultimately governs the nature of information transfer at excitatory synapses. How cells regulate the formation of diverse homo- and heteromeric AMPARs is unknown. Using a sensitive biophysical approach, we show that the extracellular, membrane-distal AMPAR N-terminal domains (NTDs) orchestrate selective routes of heteromeric assembly via a surprisingly wide spectrum of subunit-specific association affinities. Heteromerization is dominant, occurs at the level of the dimer, and results in a preferential incorporation of the functionally critical GluA2 subunit. Using a combination of structure-guided mutagenesis and electrophysiology, we further map evolutionarily variable hotspots in the NTD dimer interface, which modulate heteromerization capacity. This 'flexibility' of the NTD not only explains why heteromers predominate but also how GluA2-lacking, Ca(2+)-permeable homomers could form, which are induced under specific physiological and pathological conditions. Our findings reveal that distinct NTD properties set the stage for the biogenesis of functionally diverse pools of homo- and heteromeric AMPAR tetramers.  相似文献   
99.
The phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling axis has emerged as a novel target for cancer therapy. Agents that inhibit PI3K, mTOR or both are currently under development. The mTOR allosteric inhibitor, RAD001, and the PI3K/mTOR dual kinase inhibitor, BEZ235, are examples of these agents. We were interested in developing strategies to enhance mTOR-targeted caner therapy. In this study, we found that BEZ235 alone effectively inhibited the growth of rapamycin-resistant cancer cells. Interestingly, the combination of sub-optimal concentrations of RAD001 and BEZ235 exerted synergistic inhibition of the growth of human lung cancer cells along with induction of apoptosis and G1 arrest. Furthermore, the combination was also more effective than either agent alone in inhibiting the growth of lung cancer xenografts in mice. The combination showed enhanced effects on inhibiting mTOR signaling and reducing the expression of c-Myc and cyclin D1. Taken together, our results suggest that the combination of RAD001 and BEZ235 is a novel strategy for cancer therapy.  相似文献   
100.
Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection (MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive, time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped, RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study showed that the region, RM212–RM302–RM8085–RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through MAS and map-based cloning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号