首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2161篇
  免费   134篇
  2024年   5篇
  2023年   19篇
  2022年   32篇
  2021年   57篇
  2020年   29篇
  2019年   42篇
  2018年   62篇
  2017年   49篇
  2016年   65篇
  2015年   103篇
  2014年   99篇
  2013年   150篇
  2012年   185篇
  2011年   154篇
  2010年   111篇
  2009年   96篇
  2008年   148篇
  2007年   131篇
  2006年   114篇
  2005年   120篇
  2004年   83篇
  2003年   74篇
  2002年   82篇
  2001年   29篇
  2000年   23篇
  1999年   18篇
  1998年   31篇
  1997年   14篇
  1996年   13篇
  1995年   14篇
  1994年   8篇
  1993年   9篇
  1992年   13篇
  1991年   13篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   9篇
  1986年   8篇
  1985年   11篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1969年   1篇
排序方式: 共有2295条查询结果,搜索用时 15 毫秒
191.
Resistance to anti-cancer drugs is a well recognized problem and very often it is responsible for failure of the cancer treatment. In this study, the proteome alterations associated with the development of acquired resistance to cyclin-depedent kinases inhibitor bohemine, a promising anti-cancer drug, were analyzed with the primary aim of identifying potential targets of resistance within the cell that could pave a way to selective elimination of specific resistant cell types. A model of parental susceptible CEM T-lymphoblastic leukemia cells and its resistant counterpart CEM-BOH was used and advanced 2-D liquid chromatography was applied to fractionate cellular proteins. Differentially expressed identified proteins were further verified using immunoblotting and immunohistochemistry. Our study has revealed that Rho GDP-dissociation inhibitor 2, Y-box binding protein 1, and the HSP70/90 organizing protein have a critical role to play in resistance to cyclin-depedent kinases inhibitor. The results indicated not only that quantitative protein changes play an important role in drug-resistance, but also that there are various other parameters such as truncation, post-translational modification(s), and subcellular localization of selected proteins. Furthermore, these proteins were validated for their roles in drug resistance using different cell lines resistant to diverse representatives of anti-cancer drugs such as vincristine and daunorubicin.  相似文献   
192.
Wild Silkmoth cocoons are difficult or impossible to reel under conditions that work well for cocoons of the Mulberry silkmoth, Bombyx mori . Here we report evidence that this is caused by mineral reinforcement of Wild Silkmoth cocoons and that washing these minerals out allows for the reeling of commercial lengths of good quality fibers with implications for the development of the "Wild Silk" industry. We show that in the Lasiocampid silkmoth Gonometa postica , the mineral is whewellite (calcium oxalate monohydrate). Evidence is presented that its selective removal by ethylenediaminetetraacetic acid (EDTA) leaves the gum substantially intact, preventing collapse and entanglement of the network of fibroin brins, enabling wet reeling. Therefore, this method clearly differs from the standard "degumming" and should be referred to as "demineralizing". Mechanical testing shows that such preparation results in reeled silks with markedly improved breaking load and extension to break by avoiding the damage produced by the rather harsh degumming, carding, or dry reeling methods currently in use, what may be important for the development of the silk industries not only in Asia but also in Africa and South America.  相似文献   
193.
The SIBLING (small integrin-binding ligand N-linked glycoproteins) family is the major group of noncollagenous proteins in bone and dentin. These extremely acidic and highly phosphorylated extracellular proteins play critical roles in the formation of collagenous mineralized tissues. Whereas the lack of individual SIBLINGs causes significant mineralization defects in vivo, none of them led to a complete cessation of mineralization suggesting that these proteins have overlapping functions. To assess whether different SIBLINGs regulate biomineralization in a similar manner and how phosphorylation impacts their activity, we studied the effects of two SIBLINGs, dentin matrix protein 1 (DMP1) and dentin phosphophoryn (DPP), on mineral morphology and organization in vitro. Our results demonstrate distinct differences in the effects of these proteins on mineralization. We show that phosphorylation has a profound effect on the regulation of mineralization by both proteins. Specifically, both phosphorylated proteins facilitated organized mineralization of collagen fibrils and phosphorylated DMP1-induced formation of organized mineral bundles in the absence of collagen. In summary, these results indicate that the primary structure and phosphorylation uniquely determine functions of individual SIBLINGs in regulation of mineral morphology and organization.  相似文献   
194.
195.
196.
Red blood cells (RBCs) infected by a Plasmodium parasite in malaria may lose their membrane deformability with a relative membrane stiffening more than ten-fold in comparison with healthy RBCs leading to potential capillary occlusions. Moreover, infected RBCs are able to adhere to other healthy and parasitized cells and to the vascular endothelium resulting in a substantial disruption of normal blood circulation. In the present work, we simulate infected RBCs in malaria using a multiscale RBC model based on the dissipative particle dynamics method, coupling scales at the sub-cellular level with scales at the vessel size. Our objective is to conduct a full validation of the RBC model with a diverse set of experimental data, including temperature dependence, and to identify the limitations of this purely mechanistic model. The simulated elastic deformations of parasitized RBCs match those obtained in optical-tweezers experiments for different stages of intra-erythrocytic parasite development. The rheological properties of RBCs in malaria are compared with those obtained by optical magnetic twisting cytometry and by monitoring membrane fluctuations at room, physiological, and febrile temperatures. We also study the dynamics of infected RBCs in Poiseuille flow in comparison with healthy cells and present validated bulk viscosity predictions of malaria-infected blood for a wide range of parasitemia levels (percentage of infected RBCs with respect to the total number of cells in a unit volume).  相似文献   
197.
198.
Spiroacetal compounds are ubiquitous in nature, and their stereospecific structures are responsible for diverse pharmaceutical activities. Elucidation of the biosynthetic mechanisms that are involved in spiroacetal formation will open the door to efficient generation of stereospecific structures that are otherwise hard to synthesize chemically. However, the biosynthesis of these compounds is poorly understood, owing to difficulties in identifying the responsible enzymes and analyzing unstable intermediates. Here we comprehensively describe the spiroacetal formation involved in the biosynthesis of reveromycin A, which inhibits bone resorption and bone metastases of tumor cells by inducing apoptosis in osteoclasts. We performed gene disruption, systematic metabolite analysis, feeding of labeled precursors and conversion studies with recombinant enzymes. We identified two key enzymes, dihydroxy ketone synthase and spiroacetal synthase, and showed in vitro reconstruction of the stereospecific spiroacetal structure from a stable acyclic precursor. Our findings provide insights into the creation of a variety of biologically active spiroacetal compounds for drug leads.  相似文献   
199.
Progressive muscle wasting, also known as myopathy or muscle atrophy is a debilitating and life-threatening disorder. Myopathy is a pathological condition of many diseases including cancer, diabetes, COPD, and AIDS and is a natural consequence of inactivity and aging (sarcopenia). Muscle atrophy occurs when there is a net loss of muscle mass resulting in a change in the balance between protein synthesis and protein degradation. The ubiquitin pathway and specific ubiquitin pathway enzymes have been directly implicated in the progression of atrophy. The ubiquitin E3 ligase Muscle-specific RING Finger E3 ligase (MuRF1) is upregulated and increases protein degradation and muscle wasting in numerous muscle atrophy models. The inhibition of MuRF1 could be a novel mechanism to prevent or reverse muscle wasting associated with various pathologies. We screened a small molecule library for inhibitors to MuRF1 activity and identified P013222, an inhibitor of MuRF1 autoubiquitylation. Further, P013222 was shown to inhibit MuRF1-dependent substrate ubiquitylation, and was active in inhibiting MuRF1 in a cellular atrophy model. Thus MuRF1 can be targeted in a specific manner and produce positive results in cellular atrophy models.  相似文献   
200.
Sleep and Biological Rhythms - The ALICE5 software package provides a commercially available automated sleep staging system designed for infants. This study aims to evaluate the accuracy of this...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号