首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1014篇
  免费   63篇
  2022年   15篇
  2021年   24篇
  2020年   7篇
  2019年   10篇
  2018年   25篇
  2017年   10篇
  2016年   22篇
  2015年   40篇
  2014年   60篇
  2013年   68篇
  2012年   42篇
  2011年   57篇
  2010年   41篇
  2009年   30篇
  2008年   50篇
  2007年   48篇
  2006年   27篇
  2005年   26篇
  2004年   38篇
  2003年   33篇
  2002年   17篇
  2001年   30篇
  2000年   22篇
  1999年   19篇
  1998年   10篇
  1997年   5篇
  1996年   8篇
  1995年   10篇
  1993年   5篇
  1992年   22篇
  1991年   22篇
  1990年   18篇
  1989年   21篇
  1988年   13篇
  1987年   16篇
  1986年   21篇
  1985年   20篇
  1984年   7篇
  1981年   12篇
  1980年   4篇
  1979年   4篇
  1978年   10篇
  1976年   11篇
  1975年   9篇
  1973年   4篇
  1972年   6篇
  1971年   4篇
  1970年   7篇
  1969年   5篇
  1967年   5篇
排序方式: 共有1077条查询结果,搜索用时 15 毫秒
991.
992.
The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations.  相似文献   
993.
994.
995.
996.
There is increasing interest in tuning the physical properties of semiconductor nanostructures using metal nanoparticles. In this work, ZnO nanosphere covered with Ag nanoparticles were synthesized using gamma–radiation-assisted method. The amount of deposited Ag nanoparticles is controlled by changing irradiation dose in the range of 30–100 kGy in order to tune the semiconductor–metal interaction. The successful deposition of Ag on the ZnO nanoparticles is examined by analyzing the morphology, microstructure, optical, and magnetic properties of ZnO/Ag nanoparticles through field emission scanning electron (FESEM), microscopy X-ray diffraction spectra, UV-visible absorption, photoluminescence measurement, and vibrating sample magnetometer. FESEM and elemental mapping results confirmed that Ag nanoparticles have been concentrated at the surface of spherical ZnO particles. Moreover, formation of pure metallic Ag nanoparticles has been confirmed by XRD analysis. UV-visible absorption spectra of obtained ZnO/Ag showed two combined peaks, a weak peak at the shoulder around 360 nm corresponds to ZnO and a sharp absorption at 420 nm refers to spherical Ag nanoparticles. Obtained results from photoluminescence revealed that the near-band-edge emission and defect-related visible emission bands of ZnO could be enhanced dramatically at the same time by deposition of Ag nanoparticles, which was ascribed to localized surface plasmon–exciton coupling and surface plasmon scattering. Controlling the semiconductor and metal coupling effect is interesting because of its application in highly efficient optoelectronic devices and biosensor.  相似文献   
997.
Zinc oxide, an established inorganic metal oxide in nanoparticles form exhibits tremendous anti-bacterial activity. The present study focuses on determining the anti-bacterial activity of green synthesized zinc oxide nanoparticles (ZnO NPs). Results clearly validate the effective synthesis of spherical shaped nanoparticles with average size range of 60–80 nm. SEM and EDAX data buttresses the results obtained by XRD pattern in terms of size and purity. ZnO NPs exhibited dose-dependent anti-bacterial activity against Escherichia coli (E. coli) and the IC50 value was calculated to be around 20 μg/mL. Growth kinetics study was conducted in the presence of nanoparticles which demonstrated the bacteriostatic effect of ZnO NPs. The study recommends the potential use of ZnO NPs in industries like food, pharmaceutical, agriculture, cosmetic industries for its anti-bacterial activity.  相似文献   
998.
African Americans are at increased risk for spontaneous preterm birth (PTB). Though PTB is heritable, genetic studies have not identified variants that account for its intergenerational risk, prompting the hypothesis that epigenetic factors may also contribute. The objective of this study was to evaluate DNA methylation from maternal leukocytes to identify patterns specific to PTB and its intergenerational risk. DNA from peripheral leukocytes from African American women that delivered preterm (24–34 weeks; N = 16) or at term (39–41 weeks; N = 24) was assessed for DNA methylation using the HumanMethylation450 BeadChip. In maternal samples, 17,829 CpG sites associated with PTB, but no CpG site remained associated after correction for multiple comparisons. Examination of paired maternal-fetal samples identified 5,171 CpG sites in which methylation of maternal samples correlated with methylation of her respective fetus (FDR < 0.05). These correlated sites were enriched for association with PTB in maternal leukocytes. The majority of correlated CpG sites could be attributed to one or more genetic variants. They were also significantly more likely to be in genes involved in metabolic, cardiovascular, and immune pathways, suggesting a role for genetic and environmental contributions to PTB risk and chronic disease. The results of this study may provide insight into the factors underlying intergenerational risk for PTB and its consequences.  相似文献   
999.
1000.
Tail regression in tadpoles is one of the most spectacular events in anuran metamorphosis. Reactive oxygen species and oxidative stress play an important role during this process. Presently, the cell- and tissue-specific localization of antioxidant enzymes such as superoxide dismutase (SOD) and catalase as well as neuronal and inducible nitric oxide synthase isoforms (nNOS and iNOS) responsible for production of nitric oxide (NO) were carried out during different stages of metamorphosis in tail of tadpole Xenopus laevis. NO also has profound effect on the mitochondrial function having its own nitric oxide NOS enzyme. Hence, in situ staining for NO and mitochondria also was investigated. The distribution of nNOS and iNOS was found to be stage specific, and the gene expression of nNOS was up-regulated by thyroxin treatment. In situ staining for NO and mitochondria shows co-localization, suggesting mitochondria being one of the sources of NO. SOD and catalase showed significant co-localization during earlier stages of metamorphosis, but before the tail regression begins, there was a significant decrease in activity as well as co-localization suggesting increased ROS accumulation. These findings are discussed in terms of putative functional importance of ROS and cytoplasmic as well as mitochondrial derived NO in programmed cell death in tail tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号