首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   20篇
  2022年   3篇
  2021年   7篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   11篇
  2015年   8篇
  2014年   14篇
  2013年   18篇
  2012年   18篇
  2011年   22篇
  2010年   16篇
  2009年   8篇
  2008年   15篇
  2007年   26篇
  2006年   14篇
  2005年   14篇
  2004年   13篇
  2003年   9篇
  2002年   9篇
  2001年   11篇
  2000年   10篇
  1999年   10篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1990年   2篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1980年   2篇
  1968年   1篇
  1964年   2篇
  1956年   1篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
281.
Plant Molecular Biology Reporter - In plants, Lipoxygenase (LOX) genes play crucial roles in tolerance to abiotic as well as biotic stress. Although they have been characterized in various plants,...  相似文献   
282.
Improving treatment of advanced melanoma may require the development of effective strategies to overcome resistance to different anti-tumor agents and to counteract relevant pro-tumoral mechanisms in the microenvironment. Here we provide preclinical evidence that these goals can be achieved in most melanomas, by co-targeting of oncogenic and death receptor pathways, and independently of their BRAF, NRAS, p53 and PTEN status. In 49 melanoma cell lines, we found independent susceptibility profiles for response to the MEK1/2 inhibitor AZD6244, the PI3K/mTOR inhibitor BEZ235 and the death receptor ligand TRAIL, supporting the rationale for their association. Drug interaction analysis indicated that a strong synergistic anti-tumor activity could be achieved by the three agents and the AZD6244–TRAIL association on 20/21 melanomas, including cell lines resistant to the inhibitors or to TRAIL. Mechanistically, synergy was explained by enhanced induction of caspase-dependent apoptosis, mitochondrial depolarization and modulation of key regulators of extrinsic and intrinsic cell death pathways, including c-FLIP, BIM, BAX, clusterin, Mcl-1 and several IAP family members. Moreover, silencing experiments confirmed the central role of Apollon downmodulation in promoting the apoptotic response of melanoma cells to the combinatorial treatments. In SCID mice, the AZD6244–TRAIL association induced significant growth inhibition of a tumor resistant to TRAIL and poorly responsive to AZD6244, with no detectable adverse events on body weight and tissue histology. Reduction in tumor volume was associated not only with promotion of tumor apoptosis but also with suppression of the pro-angiogenic molecules HIF1α, VEGFα, IL-8 and TGFβ1 and with inhibition of tumor angiogenesis. These results suggest that synergistic co-targeting of oncogenic and death receptor pathways can not only overcome melanoma resistance to different anti-tumor agents in vitro but can also promote pro-apoptotic effects and inhibition of tumor angiogenesis in vivo.The development of mutant BRAF (v-raf murine sarcoma viral oncogene homolog B)- and mitogen/extracellular signal-regulated kinase (MEK)-specific inhibitors, such as Vemurafenib, Dabrafenib and Trametinib, as well as of monoclonal antibodies targeting immune checkpoints, has markedly improved the treatment of advanced melanoma, as shown by highly significant effects, achieved in several trials, on progression-free and/or overall survival.1, 2, 3, 4, 5 However, a fraction of patients does not benefit from target-specific therapy or immunotherapy, and duration of clinical responses may be limited.1, 2, 3, 4, 5 Mechanisms of resistance to specific inhibitors6 and of tumor escape from immune recognition7 contribute to prevent induction of melanoma cell death by the new therapies and explain the urgent need for the identification of more effective approaches. Different strategies are being investigated to overcome melanoma resistance to single anti-tumor agents and to rescue tumor susceptibility to cell death, including co-targeting of constitutively active intracellular signaling pathways,8, 9, 10 association of target-specific drugs with inhibitors of autophagy or with endoplasmic reticulum-stress inducers11,12 and association of anti-tumor agents that trigger the extrinsic and the intrinsic pathway of apoptosis.13, 14, 15The latter approach is based on the combination of specific inhibitors of main oncogenic pathways, which in different tumor types can modulate relevant pro- and anti-apoptotic molecules in the intrinsic pathway of cell death,16, 17, 18 with targeting of the extrinsic, death receptor-dependent pathway, by usage of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or of agonistic death receptor 5 (DR5)-specific mAbs.19 Indeed, this approach has shown that association of MEK, pan-RAF or phosphoinositide 3-kinase (PI3K) inhibitors with TRAIL can overcome resistance to TRAIL13, 14, 15 and can lead to enhanced melanoma apoptosis in vitro through different mechanisms, including upregulation of bcl-2-like protein 11 isoform 1 (Bim) and activation of BCL2-associated X protein (Bax).13, 14, 15 Moreover, as hypothesized recently by Geserick et al.,20 the association of MEK or pan-RAF inhibitors with TRAIL could even be exploited as a potential approach to promote rapid elimination of most tumor cells, thus preventing the emergence of secondary resistance to BRAF inhibitors. Furthermore, the interest in the death receptor pathway, as a therapeutic target, has been recently strengthened by the evidence that TRAIL mediates disruption of the tumor-associated vasculature21 and by the discovery of TIC10, a drug that stimulates production of TRAIL and that exerts significant anti-tumor activities in preclinical in vivo models, including aggressive intracranial xenografts of human glioblastoma cells.22Nevertheless, it is currently not known whether co-targeting of MEK and/or PI3K/mammalian target of rapamycin (mTOR) and of the death receptor pathway in melanoma can overcome intrinsic resistance to each of the anti-tumor agents in most instances, irrespective of the different genetic make-up of the tumors, and whether this approach can exert synergistic, rather than additive, anti-melanoma effects. Furthermore, it remains to be verified whether the combination of MEK or PI3K/mTOR inhibitors with death receptor agonists (such as TRAIL itself or DR5-specific mAbs) may also exert significant pro-apoptotic effects in vivo on melanoma xenografts and whether this is associated with inhibition of relevant pro-tumoral processes in the tumor microenvironment.To address these issues, in this study we evaluated the anti-melanoma activity in vitro and in vivo of two- or three-drug associations using TRAIL, the MEK 1/2 inhibitor AZD6244/Selumetinib, which has significant clinical activity in melanoma,23 and the PI3K/mTOR inhibitor BEZ235, currently in clinical trials in different solid tumors, including melanoma (source www.clinicaltrials.gov). The results indicated that the three-agent (AZD6244/BEZ235/TRAIL) and two-agent (AZD6244/TRAIL) combinations exerted synergistic pro-apoptotic effects on most melanomas in a large panel. These results were observed even on melanoma cell lines resistant to TRAIL or to the inhibitors and independently of their BRAF, neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS), p53 and phosphatase and tensin homolog (PTEN) status. Moreover, an in vivo model showed that the AZD6244/TRAIL association promoted melanoma apoptosis associated with marked inhibition of angiogenesis.  相似文献   
283.

Background

In the presence of comorbidities the effectiveness of many cardioprotective strategies is blunted. The goal of this study was to assess in a hypertensive rat model if the early reperfusion with anti-hypertensive and pro-angiogenic Chromogranin A-derived peptide, Catestatin (CST:hCgA352–372; CST-Post), protects the heart via Reperfusion-Injury-Salvage-Kinases (RISK)-pathway activation, limiting infarct-size and apoptosis, and promoting angiogenetic factors (e.g., hypoxia inducible factor, HIF-1α, and endothelial nitric oxide synthase, eNOS, expression).

Methods and Results

The effects of CST-Post on infarct-size, apoptosis and pro-angiogenetic factors were studied in isolated hearts of spontaneously hypertensive rats (SHR), which underwent the following protocols: (a) 30-min ischemia and 120-min reperfusion (I/R); (b) 30-min ischemia and 20-min reperfusion (I/R-short), both with and without CST-Post (75 nM for 20-min at the beginning of reperfusion). In unprotected Wistar-Kyoto hearts, used as normal counterpart, infarct-size resulted smaller than in SHR. CST-Post reduced significantly infarct-size and improved post-ischemic cardiac function in both strains. After 20-min reperfusion, CST-Post induced S-nitrosylation of calcium channels and phosphorylation of RISK-pathway in WKY and SHR hearts. Yet specific inhibitors of the RISK pathway blocked the CST-Post protective effects against infarct in the 120-min reperfusion groups. Moreover, apoptosis (evaluated by TUNEL, ARC and cleaved caspase) was reduced by CST-Post. Importantly, CST-Post increased expression of pro-angiogenetic factors (i.e., HIF-1α and eNOS expression) after two-hour reperfusion.

Conclusions

CST-Post limits reperfusion damages and reverses the hypertension-induced increase of I/R susceptibility. Moreover, CST-Post triggers antiapoptotic and pro-angiogenetic factors suggesting that CST-Post can be used as an anti-maladaptive remodeling treatment.  相似文献   
284.
Caveolin-1 (Cav-1) can ambiguously behave as either tumor suppressor or oncogene depending on its phosphorylation state and the type of cancer. In this study we show that Cav-1 was phosphorylated on tyrosine 14 (pCav-1) by Src-kinase family members in various human cell lines and primary mouse cultures of rhabdomyosarcoma (RMS), the most frequent soft-tissue sarcoma affecting childhood. Cav-1 overexpression in the human embryonal RD or alveolar RH30 cells yielded increased pCav-1 levels and reinforced the phosphorylation state of either ERK or AKT kinase, respectively, in turn enhancing in vitro cell proliferation, migration, invasiveness and chemoresistance. In contrast, reducing the pCav-1 levels by administration of a Src-kinase inhibitor or through targeted Cav-1 silencing counteracted the malignant in vitro phenotype of RMS cells. Consistent with these results, xenotransplantation of Cav-1 overexpressing RD cells into nude mice resulted in substantial tumor growth in comparison to control cells. Taken together, these data point to pCav-1 as an important and therapeutically valuable target for overcoming the progression and multidrug resistance of RMS.  相似文献   
285.
The mucilage phenomenon, a sporadic but massive accumulation of gelatinous material, can cause serious damage to the tourism and fishing industries along the Adriatic coast. Mucilage is presently thought to be the result of the aggregation of dissolved organic matter (DOM) into particulate organic matter (POM). Three principal classes of compounds have been identified in organic matter by spectrometric determination: carbohydrates, proteins and lipids. Carbohydrates are suspected to play a role in the first steps of DOM aggregation. Despite its importance in understanding the processes leading to mucilage formation, our present knowledge of the composition of the mucilage carbohydrate fraction is incomplete. Due to its high sensitivity and specificity, liquid chromatography coupled with electrospray-ionization tandem mass spectrometry (LC-ESIMS/MS) is gaining an increasing importance as a powerful technique for carbohydrate purification and characterization in complex samples. In this work, LC-ESIMS/MS is proposed as a useful method for the investigation of the oligosaccharide content in mucilage samples. The approach was applied using 3-7 unit maltooligosaccharides as reference compounds. The composition of the investigated mucilage sample was further investigated combining LC-ESIMS/MS with classic approaches, such as spectroscopic techniques and liquid chromatography coupled with the refractory index LC-RI.  相似文献   
286.
Genetic trends for 305-day milk yield (P305) in Brazilian Guzerat herds under selection were compared. Data from 4898 lactations of 3179 purebred and crossbred cows from various regions of Brazil were used. Milk yield was adjusted for mature age and the contemporary groups were defined as herd and calving year. Genetic parameters were estimated using the MTDFREML program. The model included the random effects of animals and permanent environment, and herd-calving year, calving season and genetic composition as fixed effects. Genetic trends were estimated by linear regression of weighted average estimated breeding values as a function of calving year. The average P305 was 2065 +/- 922 kg and the heritability was 0.23 +/- 0.03. The annual genetic trend in estimated breeding values of cows for P305 was 7.09 +/- 0.71 kg between 1987 and 2004, and 6.47 +/- 2.35 kg between 1997 and 2004. For cows born and raised in the multiple ovulation and embryo transfer (MOET) nucleus, this trend was 36.46 +/- 24.54 kg/year between 1997 and 2004, 183.14 +/- 47.94 kg/year between 1997 and 2000, and 9.13 +/- 19.19 kg/year between 2001 and 2004. An average inbreeding coefficient of 0.04 was found for inbred MOET cows in 2004. Increasing the size of the family and introducing new progenies changed reliabilities and predicted transmitting ability estimates of MOET sires. In conclusion, there was a positive genetic trend for milk yield in the MOET nucleus at low inbreeding coefficients due to the increased accuracy and estimated genetic merit, but no changes in the average milk yield were observed.  相似文献   
287.
Changes in the skeletal muscle protein mass frequently occur in both physiological and pathological states. Muscle hypotrophy, in particular, is commonly observed during aging and is characteristic of several pathological conditions such as neurological diseases, cancer, diabetes, and sepsis. The skeletal muscle protein content depends on the relative rates of synthesis and degradation, which must be coordinately regulated to maintain the equilibrium. Pathological muscle depletion is characterized by a negative nitrogen balance, which results from disruption of this equilibrium due to reduced synthesis, increased breakdown, or both. The current view, mainly based on experimental data, considers hypercatabolism as the major cause of muscle protein depletion. Several signaling pathways that probably contribute to muscle atrophy have been identified, and there is increasing evidence that oxidative stress, due to reactive oxygen species production overwhelming the intracellular antioxidant systems, plays a role in causing muscle depletion both during aging and in chronic pathological states. In particular, oxidative stress has been proposed to enhance protein breakdown, directly or by interacting with other factors. This review focuses on the possibility of using antioxidant treatments to target molecular pathways involved in the pathogenesis of skeletal muscle wasting.  相似文献   
288.
289.
Filter-paper strips saturated with Bacillus stearothermophilus spores were prepared and then stored for up to 1470 days. The strips were used to measures spore activation time and death kinetics in two systems: a serum bottle/oil bath combination, and glassine packages in a gravity autoclave. The data collected were analyzed primarily by analysis of variance and the interaction of spore storage time, processing temperature, inertial time and exposure time was determined.  相似文献   
290.
Hepatitis B core (HBc)Ag-specific T cells present in the peripheral blood of a patient with chronic active hepatitis B were expanded by co-cultivation for 7 days with rHBcAg. After cloning at 1 cell/well in the presence of PHA and IL-2, five HBcAg-specific CD4+ cloned lines were obtained. All five lines proliferated and produced IL-2, IFN-gamma, and TNF in a dose-dependent fashion in response to HBcAg, but not to HBV envelope Ag. The cloned lines and derivative clones were HLA class II (DR1) restricted. All T cell clones were able to induce anti-HBc production by autologous B cells in response to HBcAg (helper effect). The proliferative response and the helper effect of the HBcAg-specific T cell lines and clones were augmented by co-cultivation with an autologous, autoreactive (HLA-DQ1 specific) T cell clone, even in the absence of HBcAg, and the autoreactive T cells directly stimulated anti-HBc secretion by autologous B cells, presumably due to the release of Ag-nonspecific factors. These findings define a model immunoregulatory circuit the physiologic significance of which remains to be determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号