首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   8篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   11篇
  2012年   7篇
  2011年   8篇
  2010年   5篇
  2009年   2篇
  2008年   8篇
  2007年   12篇
  2006年   10篇
  2005年   10篇
  2004年   9篇
  2003年   6篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
81.
Apoptosis plays an important role during embryonic development. Apoptotic cell death is executed by caspases and can be regulated by the Bcl-2 family of genes. Ribonuclease protection assay was used to investigate the expression of selected apoptosis-related genes of the Bcl-2 family, pro-apoptotic Bax, Bad and anti-apoptotic Bcl-2, during differentiation of murine embryonic stem cells (ES) mediated by all-trans-retinoic acid. The mRNA expression of caspase 3, caspase 6 and certain pro-inflammatory cytokines was also investigated simultaneously. ES cells exposed to 1 microM all-trans-retinoic acid on day 8, 9 and 10 of differentiation revealed increased expression of Bax and Bad compared to the vehicle-treated cells. No effect on Bcl-2 mRNA was noted after all-trans-retinoic acid treatment. Increased mRNA expression of caspase 3 and caspase 6 in all-trans-retinoic acid-exposed ES cells suggested that caspases play an important role in retinoic acid-mediated apoptosis during ES differentiation. Increase in the expression of TNF alpha and macrophage migration inhibitory factor (MIF) was noted in retinoic acid-treated cells on day 14. Significant increase observed in interferon gamma inducing factor (IGIF/IL-18) mRNA expression in all-trans-retinoic acid-treated cells on day 14 and 17 did not translate to increased INF gamma expression. No change in the expression of other pro-inflammatory cytokines was noted with all-trans-retinoic acid treatment. The function of TNF alpha, IGIF/IL-18 and MIF in all-trans-retinoic acid-treated cells during ES differentiation and apoptosis is still speculatory. Results suggested that RA-mediated apoptosis during neural differentiation of ES cells involves up-regulation of caspase 3, caspase 6, Bad, and Bax.  相似文献   
82.
Gold nanoparticles (GNP) have been used in a variety of localized surface plasmon resonance (LSPR)-based optical sensor systems and in a variety of forms, such as colloidal suspensions, immobilized GNP on flat surfaces or optical fibres. A key parameter affecting the sensitivity of these systems is the effective depth of penetration of the surface plasmons. This study aims to determine the plasmon penetration depth in the case of an immobilized GNP-based LSPR optical biosensor. The optical biosensor used for experimentation is a U-bend fibre optic probe of 200-μm core diameter and 1.5-mm bend diameter on which GNP is immobilized. Formation of multilayered nanostructures on the immobilized GNP was used to investigate the field of the localized surface plasmons. Two multilayered nanostructures were explored in this study, viz. a polyelectrolyte multilayer formed by layer-by-layer (LBL) deposition of oppositely charged polyelectrolytes and an immunoglobulin G (IgG) multilayer formed through sequential immobilization of two mutually specific antibodies. Measurement of LSPR absorbance change with deposition of each analyte layer was used to determine the plasmon penetration depth (d P) of the LSPR biosensor. Probing the plasmon field with an IgG multilayer gave rise to at least twofold higher d P compared to d P obtained from the polyelectrolyte multilayer. The effect of GNP size was also studied, and GNP of three diameters, viz. 18, 36 and 45 nm, were used. The 36-nm-diameter GNP exhibited the highest d P. The outcomes of this study may provide leads for optimization of LSPR-based sensors for various biosensing applications.  相似文献   
83.
The illnesses associated with bacterial superantigens (SAgs) such as food poisoning and toxic shock syndrome, as well as the emerging threat of purpura fulminans and community-associated methicillin-resistant S. aureus producer of SAgs, emphasize the importance of a better characterization of SAg binding to their natural ligands, which would allow the development of drugs or biological reagents able to neutralize their action. SAgs are toxins that bind major histocompatibility complex class II molecules (MHC-II) and T-cell receptors (TCR), in a nonconventional manner, inducing T-cell activation that leads to production of cytokines such as tumor necrosis factor and interleukin-2, which may result in acute toxic shock. Previously, we cloned and expressed a new natural variant of staphylococcal enterotoxin G (SEG) and evaluated its ability to stimulate in vivo murine T-cell subpopulations. We found an early, strong, and widespread stimulation of mouse Vbeta8.2 T-cells when compared with other SAgs member of the SEB subfamily. In search for the reason of the strong mitogenic potency, we determined the SEG crystal structure by X-ray crystallography to 2.2 A resolution and analyzed SEG binding to mVbeta8.2 and MHC-II. Calorimetry and SPR analysis showed that SEG has an affinity for mVbeta8.2 40 to 100-fold higher than that reported for other members of SEB subfamily, and the highest reported for a wild type SAg-TCR couple. We also found that mutations introduced in mVbeta8.2 to produce a high affinity mutant for other members of the SEB subfamily do not greatly affect binding to SEG. Crystallographic analysis and docking into mVbeta8.2 in complex with SEB, SEC3, and SPEA showed that the deletions and substitution of key amino acids remodeled the putative surface of the mVbeta8.2 binding site without affecting the binding to MHC-II. This results in a SAg with improved binding to its natural ligands, which may confer a possible evolutionary advantage for bacterial strains expressing SEG.  相似文献   
84.
Förster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing. That theory has been tested in the work described in this article using linked fluorescent proteins located in the cytoplasm and at the plasma membrane of living cells. The cytoplasmic constructs were fused combinations of Cerulean as donor (D), Venus as acceptor (A), and a photoinsensitive molecule (Amber) as a nonfluorescent (N) place holder: namely, NDAN, NDNA, and ADNN duplexes, and the fully fluorescent quadruplex ADAA. The membrane-bound constructs were fused combinations of GFP2 as donor (D) and eYFP as acceptor (A): namely, two fluorescent duplexes (i.e., DA and AD) and a fluorescent triplex (ADA). According to the theory, the FRET efficiency of a multiplex such as ADAA or ADA can be predicted from that of analogs containing a single acceptor (e.g., NDAN, NDNA, and ADNN, or DA and AD, respectively). Relatively small but statistically significant differences were observed between the measured and predicted FRET efficiencies of the two multiplexes. While elucidation of the cause of this mismatch could be a worthy endeavor, the discrepancy does not appear to question the theoretical underpinnings of a large family of FRET-based methods for determining the stoichiometry and quaternary structure of complexes of macromolecules in living cells.  相似文献   
85.
86.
Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50–52°) was in the same range for both strains while zeta potential at neutral pH was −38 and −31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75° and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.  相似文献   
87.
The multifunctional arthropod 'insect kinins' share the evolutionarily conserved C-terminal pentapeptide motif Phe-X1-X2-Trp-Gly-NH2, where X1=His, Asn, Ser, or Tyr and X2=Ser, Pro, or Ala. Eight different analogs of the insect kinin C-terminal pentapeptide active core in which the critical residues Phe 1, Pro3 and Trp 4 are replaced with beta 3-amino acid and/or their beta2-amino acid counterparts were evaluated on recombinant insect kinin receptors from the southern cattle tick, Boophilus microplus (Canestrini) and the dengue vector, the mosquito Aedes aegypti (L.). A number of these analogs previously demonstrated enhanced resistance to degradation by peptidases. Single-replacement analog beta 2 Trp 4 and double-replacement analog [beta 3 Phe 2, beta 3 Pro 3] of the insect kinins proved to be selective agonists for the tick receptor, whereas single-replacement analog beta 3 Pro 3 and double-replacement analog [beta 3 Phe, beta 3 Pro 3] were strong agonists on both mosquito and tick receptors. These biostable analogs represent new tools for arthropod endocrinologists and potential leads in the development of selective, environmentally friendly arthropod pest control agents capable of disrupting insect kinin-regulated processes.  相似文献   
88.
Inhibition of hepatic cysteine proteases by non-steroidal anti-inflammatory drug (NSAID) metabolites is implicated in several pathological conditions. It has been reported in the literature that N-acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen (APAP) can quickly arylate and oxidize thiol (cysteine) protease of the papain family to form an adduct in the pathogenesis of acetaminophen-induced hepatotoxicity. It was also clarified by earlier NMR studies that the 3-position of the aromatic ring (C-3) is the only site of conjugation with cysteinyl thioethers for protein arylation. In a recent study, the adduct of NAPQI has been identified and characterized by LC/MS/MS, LC/NMR and UV spectroscopy, and two possible covalent binding modes corresponding to the 2-position (model-1) and the 3 -position (model-2) of the aromatic ring of NAPQI have been proposed. The work presented here has been initiated to check the structural viability of inhibition for the two proposed adducts at the atomic level. Results of our investigation by computer-assisted molecular modeling structurally demonstrate why model-2 would be more applicable to the static x-ray structure of the complex at physiological pH. This coordinated computational and molecular biology experiment can be used for metabolic screening of NSAIDs. A combinatorial approach of this kind alleviates the doubts in interpreting the results of metabolic function and enhances our insights obtained from either computational or experimental studies alone.  相似文献   
89.
The systematic analysis of structure-activity relationships of insect kinins on two heterologous receptor-expressing systems is described. Previously, kinin receptors from the southern cattle tick, Boophilus microplus (Canestrini), and the dengue vector, the mosquito Aedes aegypti (L.), were functionally and stably expressed in CHO-K1 cells. In order to determine which kinin residues are critical for the peptide-receptor interaction, kinin core analogs were synthesized as an Ala-replacement series of the peptide FFSWGa and tested by a calcium bioluminescence plate assay. The amino acids Phe(1) and Trp(4) were essential for activity of the insect kinins in both receptors. It was confirmed that the pentapeptide kinin core is the minimum sequence required for activity and that the C-terminal amide is also essential. In contrast to the tick receptor, a large increase in efficacy is observed in the mosquito receptor when the C-terminal pentapeptide is N-terminally extended to a hexapeptide. The aminoisobutyric acid (Aib)-containing analog, FF[Aib]WGa, was as active as superagonist FFFSWGa on the mosquito receptor in contrast to the tick receptor where it was statistically more active than FFFSWGa by an order of magnitude. This restricted conformation Aib analog provides information on the conformation associated with the interaction of the insect kinins with these two receptors. Furthermore, the analog FF[Aib]WGa has been previously shown to resist degradation by the peptidases ACE and nephrilysin and represents an important lead in the development of biostable insect kinin analogs that ticks and mosquitoes cannot readily deactivate.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号