全文获取类型
收费全文 | 3209篇 |
免费 | 219篇 |
国内免费 | 1篇 |
专业分类
3429篇 |
出版年
2023年 | 14篇 |
2022年 | 29篇 |
2021年 | 53篇 |
2020年 | 35篇 |
2019年 | 47篇 |
2018年 | 71篇 |
2017年 | 54篇 |
2016年 | 98篇 |
2015年 | 173篇 |
2014年 | 178篇 |
2013年 | 204篇 |
2012年 | 276篇 |
2011年 | 245篇 |
2010年 | 150篇 |
2009年 | 145篇 |
2008年 | 206篇 |
2007年 | 190篇 |
2006年 | 151篇 |
2005年 | 148篇 |
2004年 | 157篇 |
2003年 | 146篇 |
2002年 | 87篇 |
2001年 | 70篇 |
2000年 | 74篇 |
1999年 | 59篇 |
1998年 | 16篇 |
1997年 | 21篇 |
1996年 | 24篇 |
1995年 | 15篇 |
1994年 | 9篇 |
1993年 | 12篇 |
1992年 | 23篇 |
1991年 | 16篇 |
1990年 | 15篇 |
1989年 | 13篇 |
1988年 | 15篇 |
1987年 | 16篇 |
1986年 | 16篇 |
1985年 | 13篇 |
1984年 | 13篇 |
1983年 | 13篇 |
1982年 | 10篇 |
1981年 | 10篇 |
1980年 | 10篇 |
1979年 | 8篇 |
1978年 | 6篇 |
1975年 | 11篇 |
1974年 | 8篇 |
1972年 | 6篇 |
1971年 | 6篇 |
排序方式: 共有3429条查询结果,搜索用时 15 毫秒
51.
The effect of 2',4',7-trihydroxyisoflavone on ultraviolet-induced matrix metalloproteinases-1 expression in human skin fibroblasts 总被引:1,自引:0,他引:1
UV-induced matrix metalloproteinases (MMPs) cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of 2',4',7-trihydroxyisoflavone (THF) on UV-induced MMP-1 expression in human skin fibroblasts (HSFs). We found that UV irradiation increases MMP-1 expression and that this is mediated by ERK and JNK activation, but not by p38 activation. Pretreatment of HSFs with 2',4',7-THF inhibited UV-induced MMP-1 expression in a dose-dependent manner, and also inhibited the UV-induced activations of ERK and JNK by inhibiting MEK1 and SEK1 activation, respectively. Moreover, inhibitions of ERK and JNK by 2',4',7-THF resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced AP-1 DNA binding activity. This inhibitory effect of 2',4',7-THF on MMP-1 was not mediated by an antioxidant effect. In conclusion, our results demonstrate that 2',4',7-THF can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, 2',4',7-THF is a potential agent for the prevention and treatment of skin aging. 相似文献
52.
Simple aromatic compounds containing propenone moiety show considerable dual COX/5-LOX inhibitory activities 总被引:5,自引:0,他引:5
Jahng Y Zhao LX Moon YS Basnet A Kim EK Chang HW Ju HK Jeong TC Lee ES 《Bioorganic & medicinal chemistry letters》2004,14(10):2559-2562
For the development of safer anti-inflammatory agents, simple aromatic compounds containing propenone moiety were prepared and evaluated for their dual COX/5-LOX inhibitory activities. Among the 17 prepared compounds, most of the compounds exhibited considerable COX/5-LOX inhibitory activities. Especially compound C(15) showed the most significant dual COX/5-LOX inhibitory activity. 相似文献
53.
Moon CH Jung YS Kim MH Lee SH Baik EJ Park SW 《Prostaglandins, leukotrienes, and essential fatty acids》2000,62(5):277-283
Antiplatelet actions of aqueous extract of onion were investigated in rat and human platelet. IC(50)values of onion extract for collagen-, thrombin-, arachidonic acid (AA)-induced aggregations and collagen-induced thromboxane A(2)(TXA(2)) formation were 0.17 +/- 0. 01, 0.23 + 0.03, 0.34 +/- 0.02 and 0.12 +/- 0.01 g/ml, respectively. [(3)H]-AA release induced by collagen (10 microg/ml) in rat platelet was decreased by onion compared to control (22.1 +/- 2.13 and 5.2 +/- 0.82% of total [(3)H]-AA incorporated, respectively). In fura-2 loaded platelets, the elevation of intracellular Ca(2+)concentration stimulated by collagen was inhibited by onion. Onion had no cytotoxic effect in platelet. Onion significantly inhibited TXA(2)synthase activity without influence on COX activity. Platelet aggregation induced by U46619, a stable TXA(2)mimetic, was inhibited by onion, indicating its antagonism for TXA(2)/PGH(2)receptor. These results suggest that the mechanism for antiplatelet effect of onion may, at least partly, involve AA release diminution, TXA(2)synthase inhibition and TXA(2)/PGH(2)receptor blockade. 相似文献
54.
Hyung-Ran Kim Anbok Lee Eun-Jeong Choi Jeong-Hae Kie Woosung Lim Hyeon Kook Lee Byung-In Moon Ju-Young Seoh 《PloS one》2014,9(4)
Reactive oxygen species (ROS) have been implicated in the progression of inflammatory diseases including inflammatory bowel diseases (IBD). Meanwhile, several studies suggested the protective role of ROS in immune-mediated inflammatory diseases, and it was recently reported that dextran sodium sulfate (DSS)-induced colitis was attenuated in mice with an elevated level of ROS due to deficiency of peroxiredoxin II. Regulatory T cells (Tregs) are critical in the prevention of IBD and Treg function was reported to be closely associated with ROS level, but it has been investigated only in lowered levels of ROS so far. In the present study, in order to clarify the relationship between ROS level and Treg function, and their role in the pathogenesis of IBD, we investigated mice with an elevated level of ROS due to deficiency of both glutathione peroxidase (GPx)-1 and catalase (Cat) for the susceptibility of DSS-induced colitis in association with Treg function. The results showed that DSS-induced colitis was attenuated and Tregs were hyperfunctional in GPx1−/− × Cat−/− mice. In vivo administration of N-acetylcysteine (NAC) aggravated DSS-induced colitis and decreased Treg function to the level comparable to WT mice. Attenuated Th17 cell differentiation from naïve CD4+ cells as well as impaired production of IL-6 and IL-17A by splenocytes upon stimulation suggested anti-inflammatory tendency of GPx1−/− × Cat−/− mice. Suppression of Stat3 activation in association with enhancement of indoleamine 2,3-dioxygenase and FoxP3 expression might be involved in the immunosuppressive mechanism of GPx1−/− × Cat−/− mice. Taken together, it is implied that ROS level is critical in the regulation of Treg function, and IBD may be attenuated in appropriately elevated levels of ROS. 相似文献
55.
Young Moon Choi Byoung Wan Lee Myung Sun Jung Hyun Soo Han Suk Hyun Kim Kaifeng Chen Dong Ha Kim Tony F. Heinz Shanhui Fan Jihye Lee Gi‐Ra Yi Jung Kyu Kim Jong Hyeok Park 《Liver Transplantation》2020,10(22)
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices. 相似文献
56.
The two-stage culture system consisting of green vegetative growth and reddish inductive production stages has been widely accepted for the production of astaxanthin using Haematococcuspluvialis. However, little has been known about the appropriate cellular phase of H.pluvialis for transferring into the astaxanthin inductive conditions. In this study, we determined the optimal growth phase of H.pluvialis for transferring into the second production stage. Astaxanthin productivities were correlated with growth phases, as senescent green phases could increase more than 10-fold greater than juvenile green phases. Our results clearly demonstrated the appropriateness of the senescent vegetable cells for transferring into the production stage, due to the increased capacity to accumulate astaxanthin. 相似文献
57.
Suli Sun Moon Young Kim Kyujung Van Yin-Won Lee Baodu Li Suk-Ha Lee 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2013,126(8):2029-2038
Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major contributor to poor soybean seed quality and significant yield loss, particularly in early maturing soybean genotypes. However, it is not yet known whether PSD resistance is associated with early maturity. This study was conducted to identify quantitative trait loci (QTLs) for resistance to PSD and days to maturity using a recombinant inbred line (RIL) population derived from a cross between the PSD-resistant Taekwangkong and the PSD-susceptible SS2-2. Based on a genetic linkage map incorporating 117 simple sequence repeat markers, QTL analysis revealed two and three QTLs conferring PSD resistance and days to maturity, respectively, in the RIL population. Two QTLs (PSD-6-1 and PSD-10-2) for PSD resistance were identified in the intervals of Satt100–Satt460 and Sat_038–Satt243 on chromosomes 6 and 10, respectively. Two QTLs explained phenotypic variances in PSD resistance of 46.3 and 14.1 %, respectively. At the PSD-6-1 QTL, the PSD-resistant cultivar Taekwangkong contributed the allele with negative effect decreasing the infection rate of PSD and this QTL does not overlap with any previously reported loci for PSD resistance in other soybean genotypes. Among the three QTLs for days to maturity, two (Mat-6-2 and Mat-10-3) were located at positions similar to the PSD-resistance QTLs. The identification of the QTLs linked to both PSD resistance and days to maturity indicates a biological correlation between these two traits. The newly identified QTL for resistance to PSD associated with days to maturity in Taekwangkong will help improve soybean resistance to P. longicolla. 相似文献
58.
Eun Jin Kim Dokyung Lee Se Hoon Moon Chan Hee Lee Sang Jun Kim Jae Hyun Lee Jae Ouk Kim Manki Song Bhabatosh Das John D. Clemens Jean William Pape G. Balakrish Nair Dong Wook Kim 《PLoS pathogens》2014,10(9)
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor. 相似文献
59.
Kim MH Jung YS Moon CH Jeong EM Lee SH Baik EJ Moon CK 《Biochemical and biophysical research communications》2003,309(1):1-6
We investigated which PKC isoforms are involved in high glucose-induced protection against hypoxic injury. Treatment for 48 h with high glucose (22 mM) markedly increased the expression of PKC- epsilon in the particulate fraction (213+/-22.1% of the control) but had no effect on other types of PKC isoforms, suggesting that the high glucose-induced increase in PKC expression is isoform-specific. The mRNA level for PKC- epsilon was also substantially increased, reaching its peak after 4h of high glucose treatment. The high glucose increased PKC-epsilon activity in the particulate fraction up to 183+/-32.2% of the control. During hypoxia, the amount of PKC-epsilon in the particulate fraction was remarkably diminished in the low glucose-treated cells, but remained at a higher level in high glucose-treated cells. The treatment with epsilon V1-2 (10 microM), a specific inhibitor of PKC epsilon, abolished the protective effect of high glucose against hypoxia. These results suggest that isoform-specific induction of PKC-epsilon is involved in high glucose-induced protection against hypoxic injury in heart-derived H9c2 cells. 相似文献
60.
Sung‐Je Moon Jae‐Hoon Kim Young‐Keun Choi Chul‐Ho Lee Jung Hwan Hwang 《Journal of cellular and molecular medicine》2020,24(15):8814-8825
The growth arrest and DNA damage‐inducible beta (Gadd45β) protein have been associated with various cellular functions, but its role in progressive renal disease is currently unknown. Here, we examined the effect of Gadd45β deletion on cell proliferation and apoptosis, inflammation, and renal fibrosis in an early chronic kidney disease (CKD) mouse model following unilateral ureteral obstruction (UUO). Wild‐type (WT) and Gadd45β‐knockout (KO) mice underwent either a sham operation or UUO and the kidneys were sampled eight days later. A histological assay revealed that ablation of Gadd45β ameliorated UUO‐induced renal injury. Cell proliferation was higher in Gadd45β KO mouse kidneys, but apoptosis was similar in both genotypes after UUO. Expression of pro‐inflammatory cytokines after UUO was down‐regulated in the kidneys from Gadd45β KO mice, whereas UUO‐mediated immune cell infiltration remained unchanged. The expression of pro‐inflammatory cytokines in response to LPS stimulation decreased in bone marrow‐derived macrophages from Gadd45β KO mice compared with that in WT mice. Importantly, UUO‐induced renal fibrosis was ameliorated in Gadd45β KO mice unlike in WT mice. Gadd45β was involved in TGF‐β signalling pathway regulation in kidney fibroblasts. Our findings demonstrate that Gadd45β plays a crucial role in renal injury and may be a therapeutic target for the treatment of CKD. 相似文献