首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   17篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   9篇
  2020年   11篇
  2019年   5篇
  2018年   10篇
  2017年   5篇
  2016年   20篇
  2015年   22篇
  2014年   34篇
  2013年   37篇
  2012年   53篇
  2011年   39篇
  2010年   28篇
  2009年   25篇
  2008年   28篇
  2007年   32篇
  2006年   25篇
  2005年   23篇
  2004年   16篇
  2003年   19篇
  2002年   15篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1981年   3篇
  1980年   1篇
  1970年   1篇
  1967年   1篇
  1964年   1篇
  1962年   2篇
排序方式: 共有516条查询结果,搜索用时 15 毫秒
321.
Capsular polysaccharides of encapsulated bacteria are weakly immunogenic T cell-independent type 2 (TI-2) Ags. Recent findings suggest that BAFF system molecules have a critical role in the development of Ab responses against TI-2 Ags. In this study, we investigated the effect of bacterial polysaccharides on B cell responses to BAFF and a proliferation-inducing ligand (APRIL). We determined that B cells exposed to meningococcal type C polysaccharide (MCPS) or group B Streptococcus serotype V (GBS-V) were unresponsive to BAFF- and APRIL-induced Ig secretion. Moreover, MCPS and GBS-V strongly downregulated transmembrane activator and calcium-modulator and cyclophilin ligand interactor, the BAFF and APRIL receptor that is responsible for Ab development against TI-2 Ags. Interestingly, (4-hydroxy-3-nitrophenyl)acetyl-Ficoll (NP-Ficoll), a prototype TI-2 Ag, did not manifest a suppressive effect on B cells. Paradoxically, whereas GBS-V and MCPS inhibited IFN-γ-induced BAFF production from dendritic cells, NP-Ficoll strongly increased BAFF secretion. TLR 9 agonist CpG deoxyoligonucleotide (ODN) was able to reverse the MCPS-mediated transmembrane activator and calcium-modulator and cyclophilin ligand interactor suppression but could not rescue the Ig secretion in BAFF- or APRIL-stimulated B cells. In support of these in vitro observations, it was observed that CpG ODN could help augment the Ab response against NP in mice immunized with a CpG ODN-containing NP-Ficoll vaccine but exhibited only marginal adjuvant activity for MCPS vaccine. Collectively, these results suggest a mechanism for the weak immunogenicity of bacterial polysaccharides and explain the previously observed differences between bacterial polysaccharide and NP-Ficoll immunogenicity.  相似文献   
322.
323.
324.
Indoleamines regulate a variety of physiological functions during the growth, morphogenesis and stress‐induced responses in plants. Present investigations report the effect of NaCl stress on endogenous serotonin and melatonin accumulation and their differential spatial distribution in sunflower (Helianthus annuus) seedling roots and cotyledons using HPLC and immunohistochemical techniques, respectively. Exogenous serotonin and melatonin treatments lead to variable effect on hypocotyl elongation and root growth under NaCl stress. NaCl stress for 48 h increases endogenous serotonin and melatonin content in roots and cotyledons, thus indicating their involvement in salt‐induced long distance signaling from roots to cotyledons. Salt stress‐induced accumulation of serotonin and melatonin exhibits differential distribution in the vascular bundles and cortex in the differentiating zones of the primary roots, suggesting their compartmentalization in the growing region of roots. Serotonin and melatonin accumulation in oil body rich cells of salt‐treated seedling cotyledons correlates with longer retention of oil bodies in the cotyledons. Present investigations indicate the possible role of serotonin and melatonin in regulating root growth during salt stress in sunflower. Effect of exogenous serotonin and melatonin treatments (15 μM) on sunflower seedlings grown in the absence or presence of 120 mM NaCl substantiates their role on seedling growth. Auxin and serotonin biosynthesis are coupled to the common precursor tryptophan. Salt stress‐induced root growth inhibition, thus pertains to partial impairment of auxin functions caused by increased serotonin biosynthesis. In seedling cotyledons, NaCl stress modulates the activity of N‐acetylserotonin O‐methyltransferase (HIOMT; EC 2.1.1.4), the enzyme responsible for melatonin biosynthesis from N‐acetylserotonin.  相似文献   
325.
In vitro gut-sac preparations of all four sections (stomach, anterior, mid, and posterior intestine) of the gastrointestinal tract (GIT) of freshwater rainbow trout, together with radiotracer (22Na) techniques, were used to study unidirectional Na+ uptake rates (UR, mucosal → blood space) and net absorptive fluid transport rates (FTR) under isosmotic conditions (mucosal = serosal osmolality). On an area-specific basis, unidirectional Na+ UR was highest in the mid-intestine, but when total gut area was taken into account, the three intestinal sections contributed equally, with very low rates in the stomach. The theoretical capacity for Na+ uptake across the whole GIT is sufficient to supply all of the animal’s nutritive requirements for Na+. Transport occurs by low affinity systems with apparent K m values 2–3 orders of magnitude higher than those in the gills, in accord with comparably higher Na+ concentrations in chyme versus fresh water. Fluid transport appeared to be Na+-dependent, such that treatments which altered unidirectional Na+ UR generally altered FTR in a comparable fashion. Pharmacological trials (amiloride, EIPA, phenamil, bafilomycin, furosemide, hydrochlorothiazide) conducted at a mucosal Na+ concentration of 50 mmol L?1 indicated that GIT Na+ uptake occurs by a variety of apical mechanisms (NHE, Na+ channel/H+ ATPase, NCC, NKCC) with relative contributions varying among sections. However, at a mucosal Na+ concentration of 10 mmol L?1, EIPA, phenamil, bafilomycin, and hydrochlorothiazide were no longer effective in inhibiting unidirectional Na+ UR or FTR, suggesting the contribution of unidentified mechanisms under low Na+ conditions. A preliminary model is presented.  相似文献   
326.
The relative expression of mucin, pro- and anti-inflammatory genes besides other signaling molecules in HT-29 cells by two test probiotic strains of Lactobacillus plantarum Lp9 and Lp91 and the reference strain L. plantarum 5276 was evaluated by RT-qPCR using Relative Expression Software Tool qBase-Plus under in vitro simulated gut conditions. Ten house keeping genes were evaluated by using geNorm 3.4 excel based application. The most stable genes were RPL27, ACTB and B2M which were subsequently used for calculating the normalization factor. Under pretreatment conditions (4 h probiotic treatment, followed by lipopolysaccharide challenge for 3 h), all the three strains evoked downregulation of IL-8 expression by ~100 %, while in case of TNF-α, the downregulation of the relative gene expression was at the rate of 98.2, 93.8 and 98.0 % with Lp5276, Lp9 and Lp91, respectively, under the same set of conditions. Lp91 evoked maximum downregulation of IL12p35 and IFN-γ with corresponding fold reduction in relative expression of the two genes by 96.5 and 96.7 % during pre-treatment conditions. However, IL-10 and IFN-α were significantly upregulated to the extent of 8.13 ± 0.36 and 2.62 ± 0.14 fold by Lp91 under the same conditions. Lp9 and Lp91 were also quite effective in inducing the expression of Cox-1 and Cox-2 in HT-29 cells as can be reflected from their ratios, i.e., 5.90 and 6.50 (under pretreatment conditions); 3.79 and 4.36 (under co-culture conditions). Thus, the two putative indigenous L. plantarum strains Lp9 and Lp91 demonstrated immunomodulating functions in HT-29 cells at significant levels under different experimental conditions.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0398-2) contains supplementary material, which is available to authorized users.  相似文献   
327.

Context

Orexin is a recently identified neuropeptide hormone.

Objectives

Acute and long-term post-bariatric changes in Orexin and relationship to post-operative metabolic outcomes.

Design and Participants

Men and women undergoing biliopancreatic diversion with duodenal switch bariatric surgery (n = 76, BMI≥35 kg/m2) were evaluated for body composition and plasma parameters at baseline, acutely (1 and 5 days) and long-term (6 and 12 months) post-surgery.

Setting

University Hospital Centre, Canada.

Interventions and Main Outcome Measures

Groups were subdivided based on acute (average 1 and 5 day) changes in Orexin prior to weight loss: (i)>10% Orexin decrease (n = 33, OrexinDEC) and (ii)>10% Orexin increase (n = 20, OrexinINC), to evaluate impact on long-term changes.

Results

Both groups had comparable preoperative Orexin levels, BMI, age, sex distribution, diabetes and lipid lowering medication, plasma glucose and lipid parameters except for apolipoproteinB (p<0.007). Orexin increase was rapid and maintained throughout one year, while OrexinDEC subjects remained significantly lower throughout. Over 12 months, changes in BMI, fat mass, and %fat mass were comparable. Fasting glucose and insulin increased immediately 1-day post-operatively, decreasing rapidly (5-day) and declining thereafter with the OrexinINC group remaining lower than the OrexinDEC group throughout (p = 0.001). Similarly, plasma cholesterol, triglyceride, LDL-C and HDL-C decreased at 1-day, increased slightly (5-day), except HDL-C, then decreased over 1 year, with greater decreases in OrexinINC group relative to OrexinDEC group.

Conclusion

Rapid postoperative increases in plasma Orexin are associated with better improvement of glucose and lipid profiles following bariatric surgery.  相似文献   
328.
The use of human stem cell-derived cardiomyocytes to study atrial biology and disease has been restricted by the lack of a reliable method for stem cell-derived atrial cell labeling and purification. The goal of this study was to generate an atrial-specific reporter construct to identify and purify human stem cell-derived atrial-like cardiomyocytes. We have created a bacterial artificial chromosome (BAC) reporter construct in which fluorescence is driven by expression of the atrial-specific gene sarcolipin (SLN). When purified using flow cytometry, cells with high fluorescence specifically express atrial genes and display functional calcium handling and electrophysiological properties consistent with atrial cardiomyocytes. Our data indicate that SLN can be used as a marker to successfully monitor and isolate hiPSC-derived atrial-like cardiomyocytes. These purified cells may find many applications, including in the study of atrial-specific pathologies and chamber-specific lineage development.  相似文献   
329.
Dental fluorosis is characterized by subsurface hypomineralization and increased porosity of enamel, associated with a delay in the removal of enamel matrix proteins. To investigate the effects of fluoride on ameloblasts, A/J mice were given 50 ppm sodium fluoride in drinking water for four weeks, resulting serum fluoride levels of 4.5 µM, a four-fold increase over control mice with no fluoride added to drinking water. MicroCT analyses showed delayed and incomplete mineralization of fluorosed incisor enamel as compared to control enamel. A microarray analysis of secretory and maturation stage ameloblasts microdissected from control and fluorosed mouse incisors showed that genes clustered with Mmp20 appeared to be less downregulated in maturation stage ameloblasts of fluorosed incisors as compared to control maturation ameloblasts. One of these Mmp20 co-regulated genes was the global chromatin organizer, special AT-rich sequence-binding protein-1 (SATB1). Immunohistochemical analysis showed increased SATB1 protein present in fluorosed ameloblasts compared to controls. In vitro, exposure of human ameloblast-lineage cells to micromolar levels of both NaF and AlF3 led to a significantly increase in SATB1 protein content, but not levels of Satb1 mRNA, suggesting a fluoride-induced mechanism protecting SABT1 from degradation. Consistent with this possibility, we used immunohistochemistry and Western blot to show that fluoride exposed ameloblasts had increased phosphorylated PKCα both in vivo and in vitro. This kinase is known to phosphorylate SATB1, and phosphorylation is known to protect SATB1 from degradation by caspase-6. In addition, production of cellular diacylglycerol (DAG) was significantly increased in fluorosed ameloblasts, suggesting that the increased phosphorylation of SATB1 may be related to an effect of fluoride to enhance Gαq activity of secretory ameloblasts.  相似文献   
330.
Filarial parasites modulate effective immune response of their host by releasing a variety of immunomodulatory molecules, which help in the long persistence of the parasite within the host. The present study was aimed to characterize an immunomodulatory protein of Brugia malayi and its interaction with the host immune component at the structural and functional level. Our findings showed that Brugia malayi Calreticulin (BmCRT) is responsible for the prevention of classical complement pathway activation via its interaction with the first component C1q of the human host. This was confirmed by inhibition of C1q dependent lysis of immunoglobulin-sensitized Red Blood Cells (S-RBCs). This is possibly the first report which predicts CRT-C1q interaction on the structural content of proteins to explain how BmCRT inhibits this pathway. The molecular docking of BmCRT-C1q complex indicated that C1qB chain (IgG/M and CRP binding sites on C1q) played a major role in the interaction with conserved and non-conserved regions of N and P domain of BmCRT. Out of 37 amino acids of BmCRT involved in the interaction, nine amino acids (Pro126, Glu132, His147, Arg151, His153, Met154, Lys156, Ala196 and Lys212) are absent in human CRT. Both ELISA and in silico analysis showed the significant role of Ca+2 in BmCRT-HuC1q complex formation and deactivation of C1r2–C1s2. Molecular dynamics studies of BmCRT-HuC1q complex showed a deviation from ∼0.4 nm to ∼1.0 nm. CD analyses indicated that BmCRT is composed of 49.6% α helix, 9.6% β sheet and 43.6% random coil. These findings provided valuable information on the architecture and chemistry of BmCRT-C1q interaction and supported the hypothesis that BmCRT binds with huC1q at their targets (IgG/M, CRP) binding sites. This interaction enables the parasite to interfere with the initial stage of host complement activation, which might be helpful in parasites establishment. These results might be utilized for help in blocking the C1q/CRT interaction and preventing parasite infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号