首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2010年   4篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
  1986年   3篇
  1976年   1篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
31.
In order to understand the mode of action of the taxonomically related pathogens Xanthomonas campestris pv. translucens, Xanthomonas oryzae pv. oryzae, and Xanthomonas oryzae pv. oryzicola, which attack wheat and rice crops, we examined the compositional differences of their exopolysaccharides (EPSs). Maximum production of polysaccharide in shake cultures of these pathogens was observed between 24 and 72 h. X. campestris pv. translucens, the leaf streak pathogen of wheat, produced a higher amount of polysaccharide (46.97 microg/ml) at 72 h compared to X. oryzae pv. oryzae (42.02 microg/ml), the bacterial blight pathogen of rice, and X. oryzae pv. oryzicola (41.91 microg/ml), the bacterial leaf streak pathogen of rice. Infrared (FTIR) spectra suggested that the polysaccharides of all three Xanthomonas pathovar strains have an -OH group with intermolecular hydrogen bonding, a C-H group of methyl alkanes, an aldehyde (RCHO) group, a C=C or C=O group, and a C-O group. FTIR spectra also revealed the presence of an acid anhydride group in X. oryzae pv. oryzae, a secondary aromatic or aliphatic amine group in X. campestris pv. translucens, and a primary aromatic or aliphatic amine group in X. oryzae pv. oryzae and X. oryzae pv. oryzicola. Nuclear magnetic resonance (NMR) spectra revealed the presence of unsubstituted sugars, an acetyl amine of hexose or pentose, and a beta-anomeric carbon of hexose or pentose in the polysaccharides of all bacteria. NMR spectra also identified the alpha-anomeric carbon of hexose or pentose in all strains, and a branching at the fourth carbon of the sugar only in X. campestris pv. translucens; the presence of an uronic acid molecule (acid anhydride group) in X. oryzae pv. oryzae; and a deoxy sugar, rhamnose, in X. oryzae pv. oryzicola.  相似文献   
32.
In order to understand the mode of action of taxonomically related Pseudomonas syringae pathovar strains that infect pea, tomato, and soya bean, we examined their extracellular polysaccharides (EPS). Maximum production of polysaccharide in shake culture of these pathogens was observed between 24 and 60 h. P. syringae pv. pisi 519, the bacterial blight pathogen of pea, produced a higher amount of polysaccharide (34.87 g/mL) at 60 h compared with 32.67 g/mL produced by P. syringae pv. glycinea NCPPB 1783, the bacterial blight pathogen of soya bean, and 30.03 g/mL produced by P. syringae pv. tomato NCPPB 269, the bacterial speck pathogen of tomato. EPS produced by P. syringae pv. pisi 519, P. syringae pv. tomato NCPPB 269, and P. syringae pv. glycinea NCPPB 1783 was characterized with infrared (FTIR), nuclear magnetic resonance (NMR), high performance thin layer chromatography, (HPTLC), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. HPTLC profiles revealed the presence of glucose and glucuronic acid in all bacteria and mannose only in P. syringae pv. tomato. Molecular mass of EPS of P. syringae pv. pisi (m/z 933.8), P. syringae pv. tomato (m/z 950.4), and P. syringae pv. glycinea (m/z 933.5) was confirmed by MALDI-TOF mass spectrometry.  相似文献   
33.
We have determined the DNA sequence of the distal 148 codons of trpE and all of trpG in Pseudomonas aeruginosa. These genes encode, respectively, the large and small (glutamine amidotransferase) subunits of anthranilate synthase, the first enzyme in the tryptophan synthetic pathway. The sequenced region of trpE is homologous with the distal portion of E. coli and Bacillus subtilis trpE, whereas the trpG sequence is homologous to the glutamine amidotransferase subunit genes of a number of bacterial and fungal anthranilate synthases. The two coding sequences overlap by 23 bp. Codon usage in these Pseudomonas genes shows a marked preference for codons ending in G or C, thereby resembling that of trpB, trpA, and several other chromosomal loci from this species and others with a high G + C content in their DNA. The deduced amino acid sequence for the P. aeruginosa trpG gene product differs to a surprising extent from the directly determined amino acid sequence of the glutamine amidotransferase subunit of P. putida anthranilate synthase (Kawamura et al. 1978). This suggests that these two proteins are encoded by loci that duplicated much earlier in the phylogeny of these organisms but have recently assumed the same function. We have also determined 490 bp of DNA sequence distal to trpG but have not ascertained the function of this segment, though it is rich in dyad symmetries.   相似文献   
34.
叶玉如 《生命科学》2008,20(5):709-711
突触可塑性对于脑发育过程中的神经环路重构以及学习记忆等脑的高级功能是非常重要的。许多受体酪氨酸激酶家族成员,包括TrkB、ErbB和Eph在神经连接的建立和重构过程中起到核心作用。比如,突触后EphB依赖的信号会导致树突棘的产生和神经递质受体的聚集,而ephrinA引起的EphA4激活可以导致树突棘的回缩。但是,目前对EphA4依赖的树突棘重组和对神经递质受体的调节背后的机制还知之甚少。本文将集中探讨EphA4及其下游的信号通路在神经肌肉接头和中枢神经的突触中,对神经递质受体的调节功能。  相似文献   
35.
36.
We report a patient who received a stent following intracoronary 3-irradiation. Despite a good initial angiographic result, the stent appeared to be not fully expanded on intravascular ultrasound imaging at 6-month follow-up. Four months later, sudden thrombotic occlusion occurred shortly after aspirin cessation.  相似文献   
37.
Sophisticated signaling mechanisms allow bacterial cells to cope with environmental and intracellular challenges. Activation of specific pathways ameliorates these challenges and thereby warrants integrity. Here, we demonstrate the pliability of the CckA-CtrA two-component signaling system in the freshwater bacterium Caulobacter crescentus. Our forward genetic screen to analyze suppressor mutations that can negate the chromosome segregation block induced by the topoisomerase IV inhibitor, NstA, yielded various point mutations in the cell cycle histidine kinase, CckA. Notably, we identified a point mutation in the PAS-B domain of CckA, which resulted in increased levels of phosphorylated CtrA (CtrA~P), the master cell cycle regulator. Surprisingly, this increase in CtrA~P levels did not translate into a genome-wide increase in the DNA occupancy of CtrA, but specifically enriched its affinity for the chromosomal origin of replication, Cori, and for a very small sub-set of CtrA regulated promoters. We show that through this enhanced binding of CtrA to the Cori, cells are able to overcome the toxic defects rendered by stable NstA through a possible slow down in the chromosome replication cycle. Taken together, our work opens up an unexplored and intriguing aspect of the CckA-CtrA signal transduction pathway. The distinctive DNA binding nature of CtrA and its regulation by CckA might also be crucial for pathogenesis because of the highly conserved nature of the CckA-CtrA pathway in alphaproteobacteria.  相似文献   
38.
39.
Caldesmon (CaD), a component of microfilaments in all cells and thin filaments in smooth muscle cells, is known to bind to actin, tropomyosin, calmodulin, and myosin and to inhibit actin-activated ATP hydrolysis by smooth muscle myosin. Thus, it is believed to regulate smooth muscle contraction, cell motility and the cytoskeletal structure. Using bladder smooth muscle cell cultures and RNA interference (RNAi) technique, we show that the organization of actin into microfilaments in the cytoskeleton is diminished by siRNA-mediated CaD silencing. CaD silencing significantly decreased the amount of polymerized actin (F-actin), but the expression of actin was not altered. Additionally, we find that CaD is associated with 10 nm intermediate-sized filaments (IF) and in vitro binding assay reveals that it binds to vimentin and desmin proteins. Assembly of vimentin and desmin into IF is also affected by CaD silencing, although their expression is not significantly altered when CaD is silenced. Electronmicroscopic analyses of the siRNA-treated cells showed the presence of myosin filaments and a few surrounding actin filaments, but the distribution of microfilament bundles was sparse. Interestingly, the decrease in CaD expression had no effect on tubulin expression and distribution of microtubules in these cells. These results demonstrate that CaD is necessary for the maintenance of actin microfilaments and intermediate-sized filaments in the cytoskeletal structure. This finding raises the possibility that the cytoskeletal structure in smooth muscle is affected when CaD expression is altered, as in smooth muscle de-differentiation and hypertrophy seen in certain pathological conditions.  相似文献   
40.
Recent rapid evolution and spread of resistance to the most extensively used herbicide, glyphosate, is a major threat to global crop production. Genetic mechanisms by which weeds evolve resistance to herbicides largely determine the level of resistance and the rate of evolution of resistance. In a previous study, we determined that glyphosate resistance in Kochia scoparia is due to the amplification of the 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) gene, the enzyme target of glyphosate. Here, we investigated the genomic organization of the amplified EPSPS copies using fluorescence in situ hybridization (FISH) and extended DNA fiber (Fiber FISH) on K. scoparia chromosomes. In both glyphosate-resistant K. scoparia populations tested (GR1 and GR2), FISH results displayed a single and prominent hybridization site of the EPSPS gene localized on the distal end of one pair of homologous metaphase chromosomes compared with a faint hybridization site in glyphosate-susceptible samples (GS1 and GS2). Fiber FISH displayed 10 copies of the EPSPS gene (approximately 5 kb) arranged in tandem configuration approximately 40 to 70 kb apart, with one copy in an inverted orientation in GR2. In agreement with FISH results, segregation of EPSPS copies followed single-locus inheritance in GR1 population. This is the first report of tandem target gene amplification conferring field-evolved herbicide resistance in weed populations.Glyphosate [N-(phosphonomethyl) Gly] is the most widely used agricultural pesticide globally (Duke and Powles, 2008). Originally, being a nonselective herbicide, its use was limited to vegetation management in noncrop areas; however, introduction of glyphosate-resistant (GR) crops in the late 1990s, coupled with their exceptional adoption, led to accelerated use totaling approximately 128 million ha worldwide in 2012 (James, 2012). GR crop technology has made a significant contribution to global agriculture and the environment, as it not only increased farm income by $32.2 billion (Brookes and Barfoot, 2013), but also moderated the negative environmental impacts of mechanical weed management practices (Gardner and Nelson, 2008; Bonny, 2011). Glyphosate offers a simple, effective, and economic weed management option in GR crops. In addition, it provides immense value in no-till crop production systems by enabling soil and moisture conservation. However, due to intensive glyphosate selection pressure, several weed populations globally have evolved resistance through a variety of mechanisms. Globally, herbicide resistance, in particular the recent proliferation of glyphosate resistance in weed species, is a major crop protection threat; nearly two dozen GR weed species have been reported in the last 15 years (Heap, 2014).Glyphosate, an aminophosphonic analog of the natural amino acid Gly, nonselectively inhibits 5-Enolpyruvylshikimate-3-Phosphate synthase (EPSPS) in plants, preventing the biosynthesis of the aromatic amino acids Phe, Tyr, and Trp (Steinrücken and Amrhein, 1980), resulting in the death of glyphosate-sensitive individuals. In plants, EPSPS is one of the key enzymes in the shikimate pathway (Herrmann and Weaver, 1999), and glyphosate inhibits EPSPS by binding to EPSPS-shikimate-3-P binary complex forming an EPSPS-shikimate-3-P-glyphosate complex (Alibhai and Stallings, 2001). Bradshaw et al. (1997) hypothesized against the likelihood of weeds evolving resistance to glyphosate, primarily because of its complex biochemical interactions in the shikimate pathway and also due to the absence of known glyphosate metabolism in plants. Nonetheless, several cases of glyphosate resistance, as a result of difference in glyphosate translocation (Preston and Wakelin, 2008) or mutations in the EPSPS, were confirmed (Baerson et al., 2002). More importantly, duplication/amplification of the EPSPS appears to be the basis for glyphosate resistance in several weeds (Sammons and Gaines, 2014). Here, we use duplication to refer to the formation of first repetition of a chromosomal segment and amplification to refer to increase in number of the repetitions (more than two repetitions of a chromosomal segment) under positive selection. The first case of EPSPS amplification as a basis for glyphosate resistance was reported in an Amaranthus palmeri population from GA (Gaines et al., 2010). In this A. palmeri population, there is a massive increase (>100-fold relative to glyphosate-susceptible [GS] plants) in EPSPS copies, and these copies are dispersed throughout the genome (Gaines et al., 2010).Field-evolved GR Kochia scoparia populations were first reported in western Kansas in 2007 (Heap, 2014). We previously determined that evolution of GR populations of K. scoparia in the U.S. Great Plains is also due to amplification of the EPSPS (A. Wiersma and P. Westra, unpublished data). Unlike in GR A. palmeri, we found relative EPSPS:acetolactate synthase (ALS) copies ranging from three to nine in GR K. scoparia populations. While it quickly became widespread in the region, its presence was reported in another five Great Plains states by 2013 (Heap, 2014). GR K. scoparia populations we tested were 3- to 11-times resistant (population level) to glyphosate compared with a GS population (Godar, 2014), and EPSPS expression positively correlated with genomic EPSPS copy number (A. Wiersma and P. Westra, unpublished data). Here, we reveal the genomic organization of the amplified EPSPS copies in two GR K. scoparia populations, an alternative mechanism of gene amplification to that reported in GR A. palmeri.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号