首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2100篇
  免费   111篇
  国内免费   4篇
  2215篇
  2023年   19篇
  2022年   33篇
  2021年   48篇
  2020年   33篇
  2019年   33篇
  2018年   57篇
  2017年   50篇
  2016年   59篇
  2015年   88篇
  2014年   114篇
  2013年   145篇
  2012年   180篇
  2011年   154篇
  2010年   96篇
  2009年   96篇
  2008年   132篇
  2007年   138篇
  2006年   112篇
  2005年   90篇
  2004年   72篇
  2003年   73篇
  2002年   66篇
  2001年   17篇
  2000年   18篇
  1999年   17篇
  1998年   16篇
  1997年   14篇
  1996年   8篇
  1994年   7篇
  1993年   7篇
  1992年   10篇
  1991年   10篇
  1990年   20篇
  1989年   5篇
  1988年   10篇
  1987年   5篇
  1986年   10篇
  1985年   11篇
  1984年   13篇
  1982年   8篇
  1980年   12篇
  1979年   9篇
  1978年   6篇
  1977年   11篇
  1976年   8篇
  1975年   12篇
  1974年   8篇
  1973年   11篇
  1972年   9篇
  1971年   10篇
排序方式: 共有2215条查询结果,搜索用时 0 毫秒
991.
The spread of the recently emerged, highly pathogenic H5N1 avian influenza virus has raised concern. Preclinical studies suggest that passive immunotherapy could be a new form of treatment for H5N1 virus infection. Here, a neutralizing monoclonal antibody (MAb) against the hemagglutinin (HA) of the influenza A/chicken/Hatay/2004 H5N1 virus, MAb 9F4, was generated and characterized. MAb 9F4 binds both the denatured and native forms of HA. It was shown to recognize the HA proteins of three heterologous strains of H5N1 viruses belonging to clades 1, 2.1, and 2.2, respectively. By use of lentiviral pseudotyped particles carrying HA on the surface, MAb 9F4 was shown to effectively neutralize the homologous strain, Hatay04, and another clade 1 strain, VN04, at a neutralization titer of 8 ng/ml. Furthermore, MAb 9F4 also neutralized two clade 2 viruses at a neutralizing titer of 40 ng/ml. The broad cross-neutralizing activity of MAb 9F4 was confirmed by its ability to neutralize live H5N1 viruses of clade 2.2.2. Epitope-mapping analysis revealed that MAb 9F4 binds a previously uncharacterized epitope below the globular head of the HA1 subunit. Consistently, this epitope is well conserved among the different clades of H5N1 viruses. MAb 9F4 does not block the interaction between HA and its receptor but prevents the pH-mediated conformational change of HA. MAb 9F4 was also found to be protective, both prophylactically and therapeutically, against a lethal viral challenge of mice. Taken together, our results showed that MAb 9F4 is a neutralizing MAb that binds a novel and well-conserved epitope in the HA1 subunit of H5N1 viruses.The highly pathogenic avian influenza A subtype H5N1 virus was first isolated from geese in Guangdong province, China, in 1996 (44). Since 2003, the H5N1 strains have caused major morbidity and mortality in poultry populations across Asia, Europe, and Africa (3, 25). In 1997, the virus was transmitted from chickens to humans in Hong Kong, causing 18 reported cases of illness, including 6 deaths (6, 7, 37). As of September 2009, there were 442 confirmed human infections in 15 countries, with an alarming fatality rate of 59% (42). Although occurrences of human H5N1 infection are sporadic and rare, its rapid dissemination, the ongoing evolution of the avian H5N1 virus, and the absence of anti-H5N1 herd immunity in humans raise concerns regarding a possible H5N1 influenza pandemic (2, 4, 13). Since human infections are associated with severe disease and high mortality, the consequences of a pandemic could be catastrophic.Current strategies against influenza include vaccination and antiviral drug treatment (1). Due to the existence of multiple antigenic clades and subclades of the H5N1 virus, the difficulty of predicting the major strain that may cause the next pandemic is the main obstacle to current vaccine development. Moreover, resistance to M2 ion channel inhibitors (rimantidine and amantidine) has been reported in H5N1 isolates (1, 5), and the neuraminidase inhibitors (oseltamivir and zanamivir) require higher doses and prolonged treatment (45), and resistance has been reported in children (21). Passive immunotherapy is now increasingly used to treat numerous human infectious diseases (28, 33). Convalescent-phase blood and serum products were used to improve clinical outcomes for severely ill influenza patients during the 1918 influenza pandemic (27). Promising results with mouse models using a neutralizing monoclonal antibody (MAb) for H5N1 influenza treatment (17, 26) and a report of the recovery of an H5N1 virus-infected patient after treatment with convalescent-phase plasma (47) indicate that MAbs could be a potential treatment against H5N1 viruses.The hemagglutinin (HA) protein is one of the two major surface glycoproteins on the envelope of influenza A virus, with 16 distinct types identified in the avian species. The HA protein is responsible for receptor binding to host cells and for viral entry and is therefore the primary target of neutralizing antibodies (Abs) (35). It is a homotrimer, with each subunit made up of two disulfide-linked polypeptides, HA1 and HA2. Structurally, each subunit consists of a membrane-proximal helix-rich stem structure and a membrane-distal receptor binding globular domain (35).In this study, we describe a MAb, named MAb 9F4, raised against the recombinant baculovirus-expressed HA protein of A/chicken/Hatay/2004 H5N1 virus. Its neutralizing property was investigated, and epitope mapping was performed. The MAb 9F4 binding site was found to lie outside previously characterized antigenic sites in the HA protein. This epitope is well conserved among the different clades of H5N1 viruses, consistent with the cross-neutralizing activity of MAb 9F4. The mode of inhibition was also investigated, and MAb 9F4 was found to mediate postattachment neutralization in a dose-dependent manner. Finally, the protective ability of MAb 9F4 was also evaluated in a mouse model, and it was shown to protect against lethal H5N1 challenge both prophylactically and therapeutically. Taken together, the data could provide new information for the design of an H5N1 vaccine, and MAb 9F4 may be a possible candidate for use in passive immunotherapy.  相似文献   
992.
Bazedoxifene (BZA), a new selective estrogen receptor modulator (SERM) was recently approved in Europe for the prevention and treatment of postmenopausal osteoporosis. Combination therapy using BZA and conjugated estrogens (CE) is currently in late stage development representing a new paradigm for the treatment of menopausal symptoms and prevention of osteoporosis. A GeneChip microarray study was designed to compare gene expression profiles of BZA to that of other SERMs, raloxifene (RAL) and lasofoxifene (LAS). In addition, we compared the gene expression profiles of the three SERMs in combination with CE, a mixture of 10 most abundant estrogens present in Premarin. According to the hierarchical clustering heat map analysis, gene clusters that specifically responded to CE treatments or SERM treatments were identified and gene lists sorted based on a set of cutoff filters. A group of genes differentially regulated by CE were also identified to be antagonized by BZA when comparing CE with the BZA + CE treatment. All three SERMs showed significant antagonistic effect against CE-stimulated cell proliferation, based on the MCF-7 cell proliferation assay and GeneChip data, with the order of antagonist activity being BZA > RAL > LAS. These results indicate that SERMs in combination with CE exhibit differential pharmacology, and therefore, combinations of other SERMs and estrogen preparations may not yield the same effects that are observed in clinic by pairing BZA with CE.  相似文献   
993.
Synthetic modifications of cholesterol and other traditional steroid molecules have become a promising area for the exploration and development of novel antifungal agents, especially with respect to the development of fatty-acid esters of steroids. In addition, 2,3-functionalized steroids are also compounds with potentially interesting biological properties and proper functionalization of 2,3-steroids can lead to the development of efficient syntheses of building blocks for novel fatty-acid esters of steroids. In this Letter, we outline a novel and efficient approach to the synthesis of 2,3-functionalized cholestane and androstane derivatives and present their promising preliminary antifungal activities against a number of fungal species.  相似文献   
994.
A novel set of compounds with a 1,3-dioxolane ring which acts as a proline bioisostere have been successfully designed as VLA-4 receptor antagonists. Compounds (18e), (28j), and (35g) were shown to have high receptor affinities.  相似文献   
995.
Hypertension is a major risk factor for human morbidity and mortality through its effects on target organs like heart, brain and kidneys. More intensive treatment for the effective control of blood pressure significantly reduces the morbidity and mortality. The renin angiotensin system (RAS) is a coordinated hormonal cascade of major clinical importance in the regulation of blood pressure. The principal effector peptide of RAS is angiotensin II, which acts by binding to one of the two major angiotensin II receptors AT(1) and AT(2). Angiotensin II through AT(1) receptor mediates vast majority of biologically detrimental actions. Nonpeptidic angiotensin II (AT(1)) antagonists are the most specific means to block the renin angiotensin enzymatic cascade available presently. Majority of AT(1) antagonists are based on modifications of losartan structure, the first clinically used AT(1) antagonist. In this review, a comprehensive presentation of the literature on AT(1) receptor antagonists has been given.  相似文献   
996.
Fluorescence lifetime imaging (FLIM) combined with optical projection tomography (OPT) has the potential to map Förster resonant energy transfer (FRET) readouts in space and time in intact transparent or near transparent live organisms such as zebrafish larvae, thereby providing a means to visualise cell signalling processes in their physiological context. Here the first application of FLIM OPT to read out biological function in live transgenic zebrafish larvae using a genetically expressed FRET biosensor is reported. Apoptosis, or programmed cell death, is mapped in 3‐D by imaging the activity of a FRET biosensor that is cleaved by Caspase 3, which is a key effector of apoptosis. Although apoptosis is a naturally occurring process during development, it can also be triggered in a variety of ways, including through gamma irradiation. FLIM OPT is shown here to enable apoptosis to be monitored over time, in live zebrafish larvae via changes in Caspase 3 activation following gamma irradiation at 24 hours post fertilisation. Significant apoptosis was observed at 3.5 hours post irradiation, predominantly in the head region.

  相似文献   

997.

Background

Inhibition of vascular smooth muscle cell (vSMC) proliferation by oral anti-hyperglycemic agents may have a role to play in the amelioration of vascular disease in diabetes. Thiazolidinediones (TZDs) inhibit vSMC proliferation but it has been reported that they anomalously stimulate [3H]-thymidine incorporation. We investigated three TZDs, two biguanides and two sulfonylureas for their ability of inhibit vSMC proliferation. People with diabetes obviously have fluctuating blood glucose levels thus we determined the effect of media glucose concentration on the inhibitory activity of TZDs in a vSMC preparation that grew considerably more rapidly under high glucose conditions. We further explored the mechanisms by which TZDs increase [3H]-thymidine incorporation.

Methods

VSMC proliferation was investigated by [3H]-thymidine incorporation into DNA and cell counting. Activation and inhibition of thymidine kinase utilized short term [3H]-thymidine uptake. Cell cycle events were analyzed by FACS.

Results

VSMC cells grown for 3 days in DMEM with 5% fetal calf serum under low (5 mM glucose) and high (25 mM glucose) increased in number by 2.5 and 4.7 fold, respectively. Rosiglitazone and pioglitazone showed modest but statistically significantly greater inhibitory activity under high versus low glucose conditions (P < 0.05 and P < 0.001, respectively). We confirmed an earlier report that troglitazone (at low concentrations) causes enhanced incorporation of [3H]-thymidine into DNA but did not increase cell numbers. Troglitazone inhibited serum mediated thymidine kinase induction in a concentration dependent manner. FACS analysis showed that troglitazone and rosiglitazone but not pioglitazone placed a slightly higher percentage of cells in the S phase of a growing culture. Of the biguanides, metformin had no effect on proliferation assessed as [3H]-thymidine incorporation or cell numbers whereas phenformin was inhibitory in both assays albeit at high concentrations. The sulfonylureas chlorpropamide and gliclazide had no inhibitory effect on vSMC proliferation assessed by either [3H]-thymidine incorporation or cell numbers.

Conclusion

TZDs but not sulfonylureas nor biguanides (except phenformin at high concentrations) show favorable vascular actions assessed as inhibition of vSMC proliferation. The activity of rosiglitazone and pioglitazone is enhanced under high glucose conditions. These data provide further in vitro evidence for the potential efficacy of TZDs in preventing multiple cardiovascular diseases. However, the plethora of potentially beneficial actions of TZDs in cell and animal models have not been reflected in the results of major clinical trials and a greater understanding of these complex drugs is required to delineate their ultimate clinical utility in preventing macrovascular disease in diabetes.  相似文献   
998.
999.
Partial pressure of CO2 (pCO2) and osmolality as high as 150 mmHg and 440 mOsm/kg, respectively, were observed in large-scale CHO cell culture producing an antibody-fusion protein, B1. pCO2 and osmolality, when elevated to high levels in bioreactors, can adversely affect cell culture and recombinant protein production. To understand the sole impact of pCO2 or osmolality on CHO cell growth, experiments were performed in bench-scale bioreactors allowing one variable to change while controlling the other. Elevating pCO2 from 50 to 150 mmHg under controlled osmolality (about 350 mOsm/kg) resulted in a 9% reduction in specific cell growth rate. In contrast, increasing osmolality resulted in a linear reduction in specific cell growth rate (0.008 h(-1)/100 mOsm/kg) and led to a 60% decrease at 450 mOsm/kg as compared to the control at 316 mOsm/kg. This osmolality shift from 316 to 445 mOsm/kg resulted in an increase in specific production rates of lactate and ammonia by 43% and 48%, respectively. To elucidate the effect of high osmolality and/or pCO2 on the production phase, experiments were conducted in bench-scale bioreactors to more closely reflect the pCO2 and osmolality levels observed at large scale. Increasing osmolality to 400-450 mOsm/kg did not result in an obvious change in viable cell density and product titer. However, a further increase in osmolality to 460-500 mOsm/kg led to a 5% reduction in viable cell density and a 8% decrease in cell viability as compared to the control. Final titer was not affected as a result of an apparent increase in specific production rate under this increased osmolality. Furthermore, the combined effects from high pCO2 (140-160 mmHg) and osmolality (400-450 mOsm/kg) caused a 20% drop in viable cell density, a more prominent decrease as compared to elevated osmolality alone. Results obtained here illustrate the sole effect of high pCO2 (or osmolality) on CHO cell growth and demonstrate a distinct impact of high osmolality and/or pCO2 on production phase as compared to that on growth phase. These results are useful to understand the response of the CHO cells to elevated pCO2 (and/or osmolality) at a different stage of cultivation in bioreactors and thus are valuable in guiding bioreactor optimization toward improving protein production.  相似文献   
1000.
Individuals with hyperglycemia exhibit impaired exercise performance and functional vasodilatory response. Based on the importance of arachidonic acid (AA) metabolites in functional vasodilation and the increased thromboxane-to-prostacyclin ratio in diabetes, we hypothesized that chronic hyperglycemia in diabetes increases thromboxane-receptor (TP)-mediated vasoconstriction, resulting in an attenuated functional vasodilation. Three groups of lean Zucker rats (8 wk) were used to test the effects of chronic hyperglycemia on endothelial function: normal, streptozotocin (STZ; 70 mg/kg ip), and STZ + insulin (2 U/day). After 4 wk of treatment, spinotrapezius arcade arterioles were chosen for microcirculatory observation. Arteriolar diameter was measured following muscle stimulation and 10 microM AA application in the absence and presence of 1 microM SQ-29548 (TP antagonist). STZ rats exhibited significantly higher fasting glucose levels and attenuated functional and AA-induced dilation compared with normal animals. SQ-29548 improved the vasodilatory responses in STZ rats but had no effect in controls. Insulin treatment normalized both the glucose levels and the vasodilatory responses, and SQ-29548 treatment had no effect on functional or AA-mediated vasodilation in STZ + insulin animals. These results suggest that the impaired functional vasodilation in diabetic rats is due to hyperglycemia-mediated increases in TP-mediated vasoconstriction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号