首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5610篇
  免费   415篇
  国内免费   3篇
  2024年   3篇
  2023年   19篇
  2022年   40篇
  2021年   134篇
  2020年   87篇
  2019年   105篇
  2018年   149篇
  2017年   176篇
  2016年   257篇
  2015年   363篇
  2014年   411篇
  2013年   452篇
  2012年   549篇
  2011年   542篇
  2010年   348篇
  2009年   278篇
  2008年   387篇
  2007年   343篇
  2006年   299篇
  2005年   262篇
  2004年   208篇
  2003年   192篇
  2002年   155篇
  2001年   37篇
  2000年   40篇
  1999年   33篇
  1998年   30篇
  1997年   21篇
  1996年   12篇
  1995年   15篇
  1994年   10篇
  1993年   11篇
  1992年   6篇
  1991年   10篇
  1990年   3篇
  1989年   7篇
  1988年   6篇
  1987年   1篇
  1986年   3篇
  1985年   8篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有6028条查询结果,搜索用时 15 毫秒
991.
Na+/H+ exchanger 3 (NHE3) plays a pivotal role in transepithelial Na+ and HCO3(-) absorption across a wide range of epithelia in the digestive and renal-genitourinary systems. Accumulating evidence suggests that PDZ-based adaptor proteins play an important role in regulating the trafficking and activity of NHE3. A search for NHE3-binding modular proteins using yeast two-hybrid assays led us to the PDZ-based adaptor Shank2. The interaction between Shank2 and NHE3 was further confirmed by immunoprecipitation and surface plasmon resonance studies. When expressed in PS120/NHE3 cells, Shank2 increased the membrane expression and basal activity of NHE3 and attenuated the cAMP-dependent inhibition of NHE3 activity. Furthermore, knock-down of native Shank2 expression in Caco-2 epithelial cells by RNA interference decreased NHE3 protein expression as well as activity but amplified the inhibitory effect of cAMP on NHE3. These results indicate that Shank2 is a novel NHE3 interacting protein that is involved in the fine regulation of transepithelial salt and water transport through affecting NHE3 expression and activity.  相似文献   
992.
Many sesquiterpene lactone compounds either induce or enhance the cell differentiation of human leukemia cells. However, we reported in a previous study that santonin, a eudesmanolide sesquiterpene lactone, exerts no effects on the differentiation of leukemia cells. In this report, to evaluate the possibility of chemically modifying santonin into its derivatives with differentiation inducing activity, we synthesized a series of santonin derivatives, and determined their effects on cellular differentiation in the human promyelocytic leukemia HL-60 cell system. A diacetoxy acetal derivative of santonin (DAAS) was found to induce significant HL-60 cell differentiation in a dose-dependent manner, whereas santonin in its original form did not. The HL-60 cells were differentiated into a granulocytic lineage when exposed to DAAS. In addition, the observed induction in cell differentiation closely correlated with the levels of NF-kappaB DNA binding activity inhibited by DAAS. Both Western blot analyses and kinase inhibitor studies determined that protein kinase C, ERK, and phosphatidylinositol 3-kinase were upstream components of the DAAS-mediated inhibition of NF-kappaB binding activity in HL-60 leukemia cells. The results of this study indicate that santonin can, indeed, be chemically modified into a derivative with differentiation inducing abilities, and suggest that DAAS might prove useful in the treatment of neoplastic diseases.  相似文献   
993.
Kang HT  Hwang ES 《Life sciences》2006,78(12):1392-1399
2-Deoxyglucose (2-DG), a non-metabolizable glucose analogue, blocks glycolysis and inhibits protein glycosylation. It has been tested in multiple studies for possible application as an anticancer or antiviral therapeutic. The inhibitory effect of 2-DG on ATP generation made it a good candidate molecule as a calorie restriction mimetic as well. Furthermore, 2-DG has been utilized in numerous studies to simulate a condition of glucose starvation. Because 2-DG disrupts glucose metabolism, protein glycosylation, and ER quality control at the same time, a cellular or pathologic outcome could be easily misinterpreted without clear understanding of 2-DG's effect on each of these aspects. However, the effect of 2-DG on protein glycosylation has rarely been investigated. A recent study suggested that 2-DG causes hyperGlcNAcylation of proteins, while low glucose supply causes hypoGlcNAcylation. In certain aspects of cellular physiology, this difference could be disregarded, but in others, this may possibly cause totally different outcomes.  相似文献   
994.

Background

The lower incidence of breast cancer among Asian women compared with Western countries has been partly attributed to soy in the Asian diet, leading to efforts to identify the bioactive components that are responsible. Soy Bowman Birk Inhibitor Concentrate (BBIC) is a known cancer preventive agent now in human clinical trials.

Methodology/Principal Findings

The objectives of this work are to establish the presence and delineate the in vitro activity of lunasin and BBI found in BBIC, and study their bioavailability after oral administration to mice and rats. We report that lunasin and BBI are the two main bioactive ingredients of BBIC based on inhibition of foci formation, lunasin being more efficacious than BBI on an equimolar basis. BBI and soy Kunitz Trypsin Inhibitor protect lunasin from in vitro digestion with pancreatin. Oral administration of 3H-labeled lunasin with lunasin-enriched soy results in 30% of the peptide reaching target tissues in an intact and bioactive form. In a xenograft model of nude mice transplanted with human breast cancer MDA-MB-231 cells, intraperitoneal injections of lunasin, at 20 mg/kg and 4 mg/kg body weight, decrease tumor incidence by 49% and 33%, respectively, compared with the vehicle-treated group. In contrast, injection with BBI at 20 mg/kg body weight shows no effect on tumor incidence. Tumor generation is significantly reduced with the two doses of lunasin, while BBI is ineffective. Lunasin inhibits cell proliferation and induces cell death in the breast tumor sections.

Conclusions/Significance

We conclude that lunasin is actually the bioactive cancer preventive agent in BBIC, and BBI simply protects lunasin from digestion when soybean and other seed foods are eaten by humans.  相似文献   
995.
996.
Endothelium-derived nitric oxide (NO) is synthesized from L-arginine by endothelial nitric oxide synthase (eNOS) encoded by the eNOS gene on chromosome 7. The effects of the eNOS polymorphisms with the risk of spontaneous pregnancy losses are conflicting. In this study, we investigated the association of the eNOS genotypes with spontaneously aborted embryos in Koreans. Case-control studies were performed to evaluate the association between endothelial nitric oxide synthase (eNOS) gene polymorphisms and spontaneously aborted embryos. Ninety-nine spontaneously aborted fetuses at <20 weeks of gestational age and 103 child controls and 282 adult controls. Genotype frequency of three eNOS gene polymorphisms, ?786T>C, VNTR in intron 4 (4a4b), and 894G>T in spontaneously aborted embryos was surveyed. The frequencies of ?786TC and CC genotypes in aborted embryos were significantly higher than in both child and adult controls. The frequencies of 4a4a homozygote of VNTR polymorphism in intron 4 and TT homozygote of 894G>T polymorphisms were also higher in aborted embryos than in adult controls. Haploptype analysis suggested that ?786T>C polymorphism was a possible risk factor for spontaneously aborted embryos. eNOS gene polymorphisms, ?786T>C, VNTR in intron 4 (4a4b), and 894G>T, are associated with the risk of spontaneously aborted fetuses.  相似文献   
997.
We examined the effects of chitosan oligosaccharides (COSs) with different molecular weights (COS-A, 10 kDa < MW < 20 kDa; COS-C, 1 kDa < MW < 3 kDa) on the lipopolysaccharide (LPS)-induced production of prostaglandin E2 and nitric oxide and on the expression of cyclooxygenase-2 and inducible nitric oxide synthase in RAW264.7 macrophages. COS-A (0.4%) and COS-C (0.2%) significantly inhibited PGE2 production in LPS-stimulated macrophages without cytotoxicity. The effect of COS-A and COS-C on COX-2 expression in activated macrophages was also investigated by immunoblotting. The inhibition of PGE2 by COS-A and COS-C can be attributed to the blocking of COX-2 protein expression. COS-A (0.4%) and COS-C (0.2%) also markedly inhibited the LPS-induced NO production of RAW 264.7 cells by 50.2% and 44.1%, respectively. The inhibition of NO by COSs was consistent with decreases in inducible nitric oxide synthase (iNOS) protein expression. To test the inhibitory effects of COS-A and COS-C on other cytokines, we also performed ELISA assays for IL-1β in LPS-stimulated RAW 264.7 macrophage cells, but only a dose-dependent decrease in the IL-1β production exerted by COS-A was observed. In order to test for irritation and the potential sensitization of COS-A and COS-C for use as cosmetic materials, human skin primary irritation tests were performed on 32 volunteers; no adverse reactions of COSs usage were observed. Based on these results, we suggest that COS-A and COS-C be considered possible anti-inflammatory candidates for topical application.  相似文献   
998.
PDC109 is a modular multi-domain protein with two fibronectin type II (Fn2) repeats joined by a linker. It plays a major role in bull sperm binding to the oviductal epithelium through its interactions with phosphorylcholines (PhCs), a head group of sperm cell membrane lipids. The crystal structure of the PDC109-PhC complex shows that each PhC binds to the corresponding Fn2 domain, while the two domains are on the same face of the protein. Long timescale explicit solvent molecular dynamics (MD) simulations of PDC109, in the presence and absence of PhC, suggest that PhC binding strongly correlates with the relative orientation of choline-phospholipid binding sites of the two Fn2 domains; unless the two domains tightly bind PhCs, they tend to change their relative orientation by deforming the flexible linker. The effective PDC109-PhC association constant of 28 M, estimated from their potential of mean force is consistent with the experimental result. Principal component analysis of the long timescale MD simulations was compared to the significantly less expensive normal mode analysis of minimized structures. The comparison indicates that difference between relative domain motions of PDC109 with bound and unbound PhC is captured by the first principal component in the principal component analysis as well as the three lowest normal modes in the normal mode analysis. The present study illustrates the use of detailed MD simulations to clarify the energetics of specific ligand-domain interactions revealed by a static crystallographic model, as well as their influence on relative domain motions in a multi-domain protein.  相似文献   
999.

Background

Structural genomic variation study, along with microarray technology development has provided many genomic resources related with architecture of human genome, and led to the fact that human genome structure is a lot more complicated than previously thought.

Methodology/Principal Findings

In the case of International HapMap Project, Epstein-Barr various immortalized cell lines were preferably used over blood in order to get a larger number of genomic DNA. However, genomic aberration stemming from immortalization process, biased representation of the donor tissue, and culture process may influence the accuracy of SNP genotypes. In order to identify chromosome aberrations including loss of heterozygosity (LOH), large-scale and small-scale copy number variations, we used Illumina HumanHap500 BeadChip (555,352 markers) on Korean HapMap individuals (n = 90) to obtain Log R ratio and B allele frequency information, and then utilized the data with various programs including Illumina ChromoZone, cnvParition and PennCNV. As a result, we identified 28 LOHs (>3 mb) and 35 large-scale CNVs (>1 mb), with 4 samples having completely duplicated chromosome. In addition, after checking the sample quality (standard deviation of log R ratio <0.30), we selected 79 samples and used both signal intensity and B allele frequency simultaneously for identification of small-scale CNVs (<1 mb) to discover 4,989 small-scale CNVs. Identified CNVs in this study were successfully validated using visual examination of the genoplot images, overlapping analysis with previously reported CNVs in DGV, and quantitative PCR.

Conclusion/Significance

In this study, we describe the result of the identified chromosome aberrations in Korean HapMap individuals, and expect that these findings will provide more meaningful information on the human genome.  相似文献   
1000.
Aims This study aimed to develop radial growth models and to predict the potential spatial distribution of Pinus densiflora (Japanese red pine) and Quercus spp. (Oaks) in South Korea, considering topographic and climatic factors.Methods We used a dataset of diameter at breast height and radial growth estimates of individual trees, topographic and climatic factors in systematic sample plots distributed over the whole of South Korea. On the basis that radial growth is attributed primarily to tree age, we developed a radial growth model employing tree age as an explanatory variable. We estimated standard growth (SG), defined as radial growth of the tree at age 30, to eliminate the influence of tree age on radial growth. In addition, SG estimates including the Topographic Wetness Index, temperature and precipitation were calculated by the Generalized Additive Model.Important findings As a result of variogram analysis of SG, we found spatial autocorrelation between SG, topographic and climatic factors. Incremental temperature had negative impacts on radial growth of P. densiflora and positive impacts on that of Quercus spp. Precipitation was associated with positive effects on both tree species. Based on the model, we found that radial growth of P. densiflora would be more vulnerable than that of Quercus spp. to climatic factors. Through simulation with the radial growth model, it was predicted that P. densiflora stands would be gradually replaced with Quercus spp. stands in eastern coastal and southern regions of South Korea in the future. The models developed in this study will be helpful for understanding the impact of climatic factors on tree growth and for predicting changes in distribution of P. densiflora and Quercus spp. due to climate change in South Korea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号