首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12116篇
  免费   776篇
  国内免费   8篇
  12900篇
  2024年   22篇
  2023年   49篇
  2022年   152篇
  2021年   232篇
  2020年   131篇
  2019年   205篇
  2018年   295篇
  2017年   244篇
  2016年   424篇
  2015年   615篇
  2014年   745篇
  2013年   797篇
  2012年   1066篇
  2011年   1042篇
  2010年   648篇
  2009年   498篇
  2008年   787篇
  2007年   674篇
  2006年   611篇
  2005年   558篇
  2004年   570篇
  2003年   452篇
  2002年   360篇
  2001年   355篇
  2000年   327篇
  1999年   227篇
  1998年   89篇
  1997年   77篇
  1996年   49篇
  1995年   48篇
  1994年   38篇
  1993年   29篇
  1992年   83篇
  1991年   54篇
  1990年   44篇
  1989年   48篇
  1988年   27篇
  1987年   28篇
  1986年   21篇
  1985年   23篇
  1984年   13篇
  1983年   15篇
  1982年   12篇
  1981年   12篇
  1980年   11篇
  1979年   9篇
  1978年   15篇
  1975年   13篇
  1974年   11篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
Summary A simple experimental method is devised to determine the fraction of plasmid-harboring cells in a bioprocess employing recombinant mammalian cells. The fraction of plasmid-harboring cells decreased as serum content in the growth medium decreased. The relatively higher increase in the generation time of the plasmid-harboring cell was primarily responsible for this decrease. The mathematical expression obtained for this fraction in terms of the two parameters, i.e. the generation time ratio and the plasmid-loss probability, could represent the experimental data extremely well. The numerical values of these parameters could show the inherent insight of the system. It was found that the data plot against time can draw us to a misleading conclusion of the absence of the effect of serum concentration.  相似文献   
82.
It has long been known that solvation plays an important role in protein-protein interactions. Here, we use a minimalistic solvation-based model for predicting protein binding energy to estimate quantitatively the contribution of the solvation factor in protein binding. The factor is described by a simple linear combination of buried surface areas according to amino-acid types. Even without structural optimization, our minimalistic model demonstrates a predictive power comparable to more complex methods, making the proposed approach the basis for high throughput applications. Application of the model to a proteomic database shows that receptor-substrate complexes involved in signaling have lower affinities than enzyme-inhibitor and antibody-antigen complexes, and they differ by chemical compositions on interfaces. Also, we found that protein complexes with components that come from the same genes generally have lower affinities than complexes formed by proteins from different genes, but in this case the difference originates from different interface areas. The model was implemented in the software PYTHON, and the source code can be found on the Shakhnovich group webpage: http://faculty.chemistry.harvard.edu/shakhnovich/software.  相似文献   
83.
84.
The 23-megabase genome of Plasmodium falciparum, the causative agent of severe human malaria, contains ~5300 genes, most of unknown function or lacking homologs in other organisms. Identification of these gene functions will help in the discovery of novel targets for the development of antimalarial drugs and vaccines. The P. falciparum genome is unusually A+T-rich, which hampers cloning and expressing these genes in heterologous systems for functional analysis. The large repertoire of genetic tools available for Saccharomyces cerevisiae makes this yeast an ideal system for large scale functional complementation analyses of parasite genes. Here, we report the construction of a cDNA library from P. knowlesi, which has a lower A+T content compared with P. falciparum. This library was applied in a yeast complementation assay to identify malaria genes involved in the decarboxylation of phosphatidylserine. Transformation of a psd1Δpsd2Δdpl1Δ yeast strain, defective in phosphatidylethanolamine synthesis, with the P. knowlesi library led to identification of a new parasite phosphatidylserine decarboxylase (PkPSD). Unlike phosphatidylserine decarboxylase enzymes from other eukaryotes that are tightly associated with membranes, the PkPSD enzyme expressed in yeast was equally distributed between membrane and soluble fractions. In vitro studies reveal that truncated forms of PkPSD are soluble and undergo auto-endoproteolytic maturation in a phosphatidylserine-dependent reaction that is inhibited by other anionic phospholipids. This study defines a new system for probing the function of Plasmodium genes by library-based genetic complementation and its usefulness in revealing new biochemical properties of encoded proteins.  相似文献   
85.
86.
Tight junctional inhibition of entry of Toxoplasma gondii into MDCK cells   总被引:1,自引:0,他引:1  
Various conditions of cultures were performed to investigate the role of tight junctions formed between adjacent MDCK cells on the entry of Toxoplasma. When MDCK cells were cocultured with excess number of Toxoplasma at the seeding density of 1 x 10(5), 3 x 10(5), and 5 x 10(5) cells/ml for 4 days, the number of intracellular parasites decreased rapidly as the host cells reached saturation density, i.e., the formation of tight junctions. When the concentration of calcium in the media (1.8 mM in general) was shifted to 5 microM that resulted in the elimination of tight junction, the penetration of Toxoplasma increased about 2-fold (p less than 0.05) in the saturated culture, while that of non-saturated culture decreased by half. Trypsin-EDTA which was treated to conquer the tight junctions of saturated culture favored the entry of Toxoplasma about 2.5-fold (p less than 0.05) compared to the non-treated, while that of non-saturated culture decreased to about one fifth. It was suggested that the tight junctions of epithelial cells play a role as a barrier for the entry of Toxoplasma and Toxoplasma penetrate into host cells through membrane structure-specific, i.e., certain kind of receptors present on the basolateral rather than apical surface of MDCK cells.  相似文献   
87.
Myeloperoxidase (MPO) functions as a key molecular component of the host defense system against diverse pathogens. We have previously reported that increased MPO levels and activity is a distinguishing feature of rotenone-exposed glial cells, and that either overactivation or deficiency of MPO leads to pathological conditions in the brain. Here, we provide that modulation of MPO levels in glia by resveratrol confers protective effects on rotenone-induced neurotoxicity. We show that resveratrol significantly reduced MPO levels but did not trigger abnormal nitric oxide (NO) production in microglia and astrocytes. Resveratrol-induced down-regulation of MPO, in the absence of an associated overproduction of NO, markedly attenuated rotenone-triggered inflammatory responses including phagocytic activity and reactive oxygen species production in primary microglia and astrocytes. In addition, impaired responses of primary mixed glia from Mpo −/− mice to rotenone were relieved by treatment with resveratrol. We further show that rotenone-induced neuronal injury, particularly dopaminergic cell death, was attenuated by resveratrol in neuron-glia co-cultures, but not in neurons cultured alone. Similar regulatory effects of resveratrol on MPO levels were observed in microglia treated with MPP+, another Parkinson’s disease-linked neurotoxin, supporting the beneficial effects of resveratrol on the brain. Collectively, our findings provide that resveratrol influences glial responses to rotenone by regulating both MPO and NO, and thus protects against rotenone-induced neuronal injury.  相似文献   
88.
Microbial production of various TCA intermediates and related chemicals through the reductive TCA cycle has been of great interest. However, rumen bacteria that naturally possess strong reductive TCA cycle have been rarely studied to produce these chemicals, except for succinic acid, due to their dependence on fumarate reduction to transport electrons for ATP synthesis. In this study, malic acid (MA), a dicarboxylic acid of industrial importance, was selected as a target chemical for mass production using Mannheimia succiniciproducens, a rumen bacterium possessing a strong reductive branch of the TCA cycle. The metabolic pathway was reconstructed by eliminating fumarase to prevent MA conversion to fumarate. The respiration system of M. succiniciproducens was reconstructed by introducing the Actinobacillus succinogenes dimethylsulfoxide (DMSO) reductase to improve cell growth using DMSO as an electron acceptor. Also, the cell membrane was engineered by employing Pseudomonas aeruginosa cis-trans isomerase to enhance MA tolerance. High inoculum fed-batch fermentation of the final engineered strain produced 61 g/L of MA with an overall productivity of 2.27 g/L/h, which is the highest MA productivity reported to date. The systems metabolic engineering strategies reported in this study will be useful for developing anaerobic bioprocesses for the production of various industrially important chemicals.  相似文献   
89.
90.
Summary Mutants have been isolated from a strain of Cellulomonas which are capable of producing up to 26-fold higher levels of -glucosidase than the parent under certain growth conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号