首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   5篇
  2014年   6篇
  2013年   5篇
  2012年   10篇
  2011年   11篇
  2010年   6篇
  2009年   3篇
  2008年   14篇
  2007年   8篇
  2006年   11篇
  2005年   13篇
  2004年   11篇
  2003年   11篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
71.
Yang SJ  Huh JW  Kim MJ  Lee WJ  Kim TU  Choi SY  Cho SW 《Biochimie》2003,85(6):581-586
It has been known that glutamate, generated by glutamate dehydrogenase (GDH), acts as an intracellular messenger in insulin exocytosis in pancreatic beta cells. Here we demonstrate the correlation of GDH activity and insulin release in rat pancreatic islets perfused with 5'-deoxypyridoxal. Perfusion of islets with 5'-deoxypyridoxal, an effective inhibitor of GDH, reduced the islet GDH activity at concentration-dependent manner. Treatment of 5'-deoxypyridoxal up to 2 mM did not affect the cell viability. There was reduction in V(max) values on average about 60%, whereas no changes in K(m) values for substrates and coenzymes were observed. The concentration of GDH on the Western blot analysis and the level of GDH mRNA remained unchanged. The concentration of glutamate decreased by 52%, whereas the concentration of 2-oxoglutarate increased up to 2.3-fold in the presence of 5'-deoxypyridoxal. 5'-Deoxypyridoxal had no effects on inhibition by GTP and activation by ADP or L-leucine of islet GDH. In parallel with the inhibition of GDH activity, perfusion of islets with 5'-deoxypyridoxal reduced insulin release up to 2.5-fold. Although precise mechanism for correlation between GDH activity and insulin release remains to be studied further, our results suggest a possibility that the inhibitory effect of 5'-deoxypyridoxal on islet GDH activity may correlate with its effect on insulin release.  相似文献   
72.
The purified glutamate dehydrogenase (GDH) from Sulfolobus solfataricus showed remarkable thermostability and retained 90–95% of the initial activity after incubation at –20°C, 4°C, and 25°C for up to 6 months. Unlike mammalian GDHs, the activity of GDH from Sulfolobus solfataricus was not significantly affected by the presence of various allosteric effectors such as ADP, GTP, and leucine. Incubation of GDH with increasing concentration of o-phthalaldehyde resulted in a progressive decrease in enzyme activity, suggesting that the o-phthalaldehyde-modified lysine or cysteine is directly involved in catalysis. The inhibition was competitive with respect to both 2-oxoglutarate (Ki = 30 M) and NADH (Ki = 100 M), further supporting a possibility that the o-phthalaldehyde-modified residues may be directly involved at the catalytic site. The modification of GDH by the arginine-specific dicarbonyl reagent phenylglyoxal was also examined with the view that arginine residues might play a general role in the binding of coenzyme throughout the family of pyridine nucleotide-dependent dehydro-genases. The purified GDH was inactivated in a dose-dependent manner by phenylglyoxal. Either NADH or 2-oxoglutarate did not gave any protection against the inactivation caused by a phenylglyoxal. This result indicates that GDH saturated with NADH or 2-oxoglutarate is still open to attack by phenylglyoxal. Phenylglyoxal was an uncompetitive inhibitor (Ki = 5 M) with respect to 2-oxoglutarate and a noncompetitive inhibitor (Ki = 6 M) with respect to NADH. The above results suggests that the phenylglyoxal-modified arginine residues are not located at the catalytic site and the inactivation of GDH by phenylglyoxal might be due to a steric hindrance or a conformational change affected by the interaction of the enzyme with its inhibitor.  相似文献   
73.
Human glutamate dehydrogenase exists in hGDH1 (housekeeping isozyme) and in hGDH2 (nerve-specific isozyme), which differ markedly in their allosteric regulation. In the nervous system, GDH is enriched in astrocytes and is important for recycling glutamate, a major excitatory neurotransmitter during neurotransmission. Chloroquine has been known to be a potent inhibitor of house-keeping GDH1 in permeabilized liver and kidney-cortex of rabbit. However, the effects of chloroquine on nerve-specific GDH2 have not been reported yet. In the present study, we have investigated the effects of chloroquine on hGDH2 at various conditions and showed that chloroquine could inhibit the activity of hGDH2 at dose-dependent manner. Studies of the chloroquine inhibition on enzyme activity revealed that hGDH2 was relatively less sensitive to chloroquine inhibition than house-keeping hGDH1. Incubation of hGDH2 was uncompetitive with respect of NADH and non-competitive with respect of 2-oxoglutarate. The inhibitory effect of chloroquine on hGDH2 was abolished, although in part, by the presence of ADP and L-leucine, whereas GTP did not change the sensitivity to chloroquine inhibition. Our results show a possibility that chloroquine may be used in regulating GDH activity and subsequently glutamate concentration in the central nervous system.  相似文献   
74.
There are conflicting views for the polymerization process of human UDP-glucose dehydrogenase (UGDH) and no clear evidence has been reported yet. Based on crystal coordinates for Streptococcus pyogenes UGDH, we made double mutant A222Q/S233G. The double mutagenesis had no effects on expression, stability, and secondary structure. Interestingly, A222Q/S233G was a dimeric form and showed an UGDH activity, although it showed increased Km values for substrates. These results suggest that Ala222 and Ser233 play an important role in maintaining the hexameric structure and the reduced binding affinities for substrates are attributable to its altered subunit communication although quaternary structure may not be critical for catalysis.  相似文献   
75.
Although the incidence and severity of atopic dermatitis (AD) is steadily increasing at an alarming rate, its pathogenic mechanisms remain poorly understood yet. Recently, we found that the expression of Grb7 protein was markedly decreased in AD patients using proteomic analysis. In the present study, human Grb7 gene was fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-Grb7 fusion protein. The expressed and purified PEP-1-Grb7 fusion proteins transduced efficiently into skin cells in a time- and dose-dependent manner when added exogenously in culture media. Once inside the cells, the transduced PEP-1-Grb7 protein was stable for 48 h. In addition, transduced PEP-1-Grb7 fusion protein markedly increased cell viability in macrophage RAW 264.7 cells treated with LPS by inhibition of the COX-2 expression level. These results suggest that the PEP-1-Grb7 fusion protein can be used in protein therapy for inflammatory skin disorders, including AD.  相似文献   
76.
77.
RPS3, a conserved, eukaryotic ribosomal protein of the 40 S subunit, is required for ribosome biogenesis. Because ribosomal proteins are abundant and ubiquitous, they may have additional extraribosomal functions. Here, we show that human RPS3 is a physiological target of Akt kinase and a novel mediator of neuronal apoptosis. NGF stimulation resulted in phosphorylation of threonine 70 of RPS3 by Akt, and this phosphorylation was required for Akt binding to RPS3. RPS3 induced neuronal apoptosis, up-regulating proapoptotic proteins Dp5/Hrk and Bim by binding to E2F1 and acting synergistically with it. Akt-dependent phosphorylation of RPS3 inhibited its proapoptotic function and perturbed its interaction with E2F1. These events coincided with nuclear translocation and accumulation of RPS3, where it functions as an endonuclease. Nuclear accumulation of RPS3 results in an increase in DNA repair activity to some extent, thereby sustaining neuronal survival. Abolishment of Akt-mediated RPS3 phosphorylation through mutagenesis accelerated apoptotic cell death and severely compromised nuclear translocation of RPS3. Thus, our findings define an extraribosomal role of RPS3 as a molecular switch that accommodates apoptotic induction to DNA repair through Akt-mediated phosphorylation.  相似文献   
78.
Three new homoisoflavonoids (1?3) were isolated from the roots of Ophiopogon japonicus (Liliaceae). The structures of new metabolites were determined on the basis of spectroscopic analyses including 2D NMR. The anti-inflammatory activities of new compounds (1?3) were investigated by their effects on the release of the inflammatory chemokine eotaxin, stimulated by IL-4 and the combination of IL-4 and TNF-α in BEAS-2B cells, which mimics the in vivo conditions in bronchial allergic asthma.  相似文献   
79.
In order to understand the mechanisms behind the undesired aging of films based on vital wheat gluten plasticized with glycerol, films cast from water/ethanol solutions were investigated. The effect of pH was studied by casting from solutions at pH 4 and pH 11. The films were aged for 120 days at 50% relative humidity and 23 degrees C, and the tensile properties and oxygen and water vapor permeabilities were measured as a function of aging time. The changes in the protein structure were determined by infrared spectroscopy and size-exclusion and reverse-phase high-performance liquid chromatography, and the film structure was revealed by optical and scanning electron microscopy. The pH 11 film was mechanically more stable with time than the pH 4 film, the latter being initially very ductile but turning brittle toward the end of the aging period. The protein solubility and infrared spectroscopy measurements indicated that the protein structure of the pH 4 film was initially significantly less polymerized/aggregated than that of the pH 11 film. The polymerization of the pH 4 film increased during storage but it did not reach the degree of aggregation of the pH 11 film. Reverse-phase chromatography indicated that the pH 11 films were to some extent deamidated and that this increased with aging. At the same time a large fraction of the aged pH 11 film was unaffected by reducing agents, suggesting that a time-induced isopeptide cross-linking had occurred. This isopeptide formation did not, however, change the overall degree of aggregation and consequently the mechanical properties of the film. During aging, the pH 4 films lost more mass than the pH 11 films mainly due to migration of glycerol but also due to some loss of volatile mass. Scanning electron and optical microscopy showed that the pH 11 film was more uniform in thickness and that the film structure was more homogeneous than that of the pH 4 film. The oxygen permeability was also lower for the pH 11 film. The fact that the pH 4 film experienced a larger and more rapid change in its mechanical properties with time than the pH 11 film, as a consequence of a greater loss of plasticizer, was presumably due to its initial lower degree of protein aggregation/polymerization. Consequently, the cross-link density achieved at pH 4 was too low to effectively retain volatiles and glycerol within the matrix.  相似文献   
80.
To produce recombinant β-carotene in vitro, synthetic operons encoding genes governing its biosynthesis were engineered into Escherichia coli. Constructs harboring these operons were introduced into either a high-copy or low-copy cloning vector. β-Carotene production from these recombinant E. coli cells was either constitutive or inducible depending upon plasmid copy number. The most efficient β-carotene production was with the low-copy based vector. The process was increased incrementally from a 5 l to a 50 l fermentor and finally into a 300 l fermentor. The maximal β-carotene yields achieved using the 50 l and 300 l fermentor were 390 mg l−1 and 240 mg l−1, respectively, with overall productivities of 7.8 mg l−1 h−1 and 4.8 mg l−1 h−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号