首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3732篇
  免费   356篇
  国内免费   253篇
  4341篇
  2024年   8篇
  2023年   41篇
  2022年   104篇
  2021年   160篇
  2020年   128篇
  2019年   145篇
  2018年   151篇
  2017年   107篇
  2016年   152篇
  2015年   238篇
  2014年   277篇
  2013年   266篇
  2012年   366篇
  2011年   288篇
  2010年   190篇
  2009年   148篇
  2008年   172篇
  2007年   168篇
  2006年   153篇
  2005年   143篇
  2004年   127篇
  2003年   127篇
  2002年   139篇
  2001年   96篇
  2000年   87篇
  1999年   74篇
  1998年   38篇
  1997年   34篇
  1996年   27篇
  1995年   24篇
  1994年   24篇
  1993年   18篇
  1992年   22篇
  1991年   25篇
  1990年   16篇
  1989年   10篇
  1988年   9篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1976年   3篇
  1975年   1篇
  1973年   2篇
  1971年   2篇
  1969年   1篇
  1956年   1篇
  1952年   2篇
排序方式: 共有4341条查询结果,搜索用时 11 毫秒
221.
Engineered bacteria have great potential for medical and environmental applications. Fulfilling this potential requires controllability over engineered behaviors and scalability of the engineered systems. Here, we present a platform technology, microbial swarmbot, which employs spatial arrangement to control the growth dynamics of engineered bacteria. As a proof of principle, we demonstrated a safeguard strategy to prevent unintended bacterial proliferation. In particular, we adopted several synthetic gene circuits to program collective survival in Escherichia coli: the engineered bacteria could only survive when present at sufficiently high population densities. When encapsulated by permeable membranes, these bacteria can sense the local environment and respond accordingly. The cells inside the microbial swarmbot capsules will survive due to their high densities. Those escaping from a capsule, however, will be killed due to a decrease in their densities. We demonstrate that this design concept is modular and readily generalizable. Our work lays the foundation for engineering integrated and programmable control of hybrid biological–material systems for diverse applications.  相似文献   
222.
Many epidemics involve plants infected with more than one pathogen, but few experiments address climate change scenarios that influence mixed infections. This study addresses the interactive effects of co‐infection and temperature on disease development in plants of the annual pasture species subterranean clover (Trifolium subterraneum), which is widely sown in different world regions. Bean yellow mosaic virus (BYMV) and the fungus Kabatiella caulivora are two important pathogens causing considerable production losses in pastures containing this species. Both occur together in such pastures causing a severe necrotic disease when mixed infection occurs. Effects of temperature on symptom expression were investigated in subterranean clover plants infected singly or in mixed infection with these pathogens. Plants were maintained in controlled environment rooms at 18°C, 20°C or 22.5°C after sap inoculation with BYMV. K. caulivora conidia suspensions were inoculated to plants once systemic BYMV symptoms developed. Plants were assessed for three disease assessment parameters, dead petioles numbers, marginal leaflet necrosis and overall plant damage. In general, mixed infection caused most severe symptoms, K. caulivora least severe symptoms, and BYMV symptoms of intermediate severity. In single infections, effects of temperature on disease severity differed between pathogens: BYMV symptoms were most pronounced at 18°C, but K. caulivora induced more severe symptoms at 20°C and 22.5°C. In mixed infections, disease severity generally followed the pattern developed with BYMV alone as temperature increased. Also, synergistic increase in disease severity sometimes occurred at 18°C, but increases were only additive at 20°C and 22.5°C. These results reflected the greater BYMV multiplication detected in infected leaves at 18°C compared with 20°C or 22.5°C. Our findings indicate that in rainfed subterranean clover pastures, as global warming progresses disease severity from infection with BYMV and K. caulivora alone may decline or increase, respectively, and mixed infection with them may become less damaging.  相似文献   
223.

Background

Previous studies have indicated that intake of dietary flavonoids or flavonoid subclasses is associated with the ovarian cancer risk, but presented controversial results. Therefore, we conducted a meta-analysis to derive a more precise estimation of these associations.

Methods

We performed a search in PubMed, Google Scholar and ISI Web of Science from their inception to April 25, 2015 to select studies on the association among dietary flavonoids, flavonoid subclasses and ovarian cancer risk. The information was extracted by two independent authors. We assessed the heterogeneity, sensitivity, publication bias and quality of the articles. A random-effects model was used to calculate the pooled risk estimates.

Results

Five cohort studies and seven case-control studies were included in the final meta-analysis. We observed that intake of dietary flavonoids can decrease ovarian cancer risk, which was demonstrated by pooled RR (RR = 0.82, 95% CI = 0.68–0.98). In a subgroup analysis by flavonoid subtypes, the ovarian cancer risk was also decreased for isoflavones (RR = 0.67, 95% CI = 0.50–0.92) and flavonols (RR = 0.68, 95% CI = 0.58–0.80). While there was no compelling evidence that consumption of flavones (RR = 0.86, 95% CI = 0.71–1.03) could decrease ovarian cancer risk, which revealed part sources of heterogeneity. The sensitivity analysis indicated stable results, and no publication bias was observed based on the results of Funnel plot analysis and Egger’s test (p = 0.26).

Conclusions

This meta-analysis suggested that consumption of dietary flavonoids and subtypes (isoflavones, flavonols) has a protective effect against ovarian cancer with a reduced risk of ovarian cancer except for flavones consumption. Nevertheless, further investigations on a larger population covering more flavonoid subclasses are warranted.  相似文献   
224.
225.
226.

Background

Long noncoding RNAs (lncRNAs) are related to different biological processes in non-small cell lung cancer (NSCLC). However, the possible molecular mechanisms underlying the effects of the long noncoding RNA HOXA11-AS (HOXA11 antisense RNA) in NSCLC are unknown.

Methods

HOXA11-AS was knocked down in the NSCLC A549 cell line and a high throughput microarray assay was applied to detect changes in the gene profiles of the A549 cells. Bioinformatics analyses (gene ontology (GO), pathway, Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses) were performed to investigate the potential pathways and networks of the differentially expressed genes. The molecular signatures database (MSigDB) was used to display the expression profiles of these differentially expressed genes. Furthermore, the relationships between the HOXA11-AS, de-regulated genes and clinical NSCLC parameters were verified by using NSCLC patient information from The Cancer Genome Atlas (TCGA) database. In addition, the relationship between HOXA11-AS expression and clinical diagnostic value was analyzed by receiver operating characteristic (ROC) curve.

Results

Among the differentially expressed genes, 277 and 80 genes were upregulated and downregulated in NSCLC, respectively (fold change ≥2.0, P < 0.05 and false discovery rate (FDR) < 0.05). According to the degree of the fold change, six upregulated and three downregulated genes were selected for further investigation. Only four genes (RSPO3, ADAMTS8, DMBT1, and DOCK8) were reported to be related with the development or progression of NSCLC based on a PubMed search. Among all possible pathways, three pathways (the PI3K-Akt, TGF-beta and Hippo signaling pathways) were the most likely to be involved in NSCLC development and progression. Furthermore, we found that HOXA11-AS was highly expressed in both lung adenocarcinoma and squamous cell carcinoma based on TCGA database. The ROC curve showed that the area under curve (AUC) of HOXA11-AS was 0.727 (95% CI 0.663–0.790) for lung adenocarcinoma and 0.933 (95% CI 0.906–0.960) for squamous cell carcinoma patients. Additionally, the original data from TCGA verified that ADAMTS8, DMBT1 and DOCK8 were downregulated in both lung adenocarcinoma and squamous cell carcinoma, whereas RSPO3 expression was upregulated in lung adenocarcinoma and downregulated in lung squamous cell carcinoma. For the other five genes (STMN2, SPINK6, TUSC3, LOC100128054, and C8orf22), we found that STMN2, TUSC3 and C8orf22 were upregulated in squamous cell carcinoma and that STMN2 and USC3 were upregulated in lung adenocarcinoma. Furthermore, we compared the correlation between HOXA11-AS and de-regulated genes in NSCLC based on TCGA. The results showed that the HOXA11-AS expression was negatively correlated with DOCK8 in squamous cell carcinoma (r = ?0.124, P = 0.048) and lung adenocarcinoma (r = ?0.176, P = 0.005). In addition, RSPO3, ADAMTS8 and DOCK8 were related to overall survival and disease-free survival (all P < 0.05) of lung adenocarcinoma patients in TCGA.

Conclusions

Our results showed that the gene profiles were significantly changed after HOXA11-AS knock-down in NSCLC cells. We speculated that HOXA11-AS may play an important role in NSCLC development and progression by regulating the expression of various pathways and genes, especially DOCK8 and TGF-beta pathway. However, the exact mechanism should be verified by functional experiments.
  相似文献   
227.
Scyllo‐inositol (SI), a stereoisomer of inositol, is regarded as a promising therapeutic agent for Alzheimer's disease. Here, an in vitro cofactor‐balance biotransformation for the production of SI from myo‐inositol (MI) by thermophilic myo‐inositol 2‐dehydrogenase (IDH) and scyllo‐inositol 2‐dehydrogenase (SIDH) is presented. These two enzymes (i.e., IDH and SIDH from Geobacillus kaustophilus) are co‐expressed in Escherichia coli BL21(DE3), and E. coli cells containing the two enzymes are permeabilized by heat treatment as whole‐cell catalysts to convert MI to SI. After condition optimizations about permeabilized temperature, reaction temperature, and initial MI concentration, about 82 g L?1 of SI is produced from 250 g L?1 of MI within 24 h without any cofactor supplementation. This final titer of SI produced is the highest to the authors’ limited knowledge. This study provides a promising method for the large‐scale industrial production of SI.  相似文献   
228.
The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2∼7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2∼7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.  相似文献   
229.
230.
You B  Yan G  Zhang Z  Yan L  Li J  Ge Q  Jin JP  Sun J 《The Biochemical journal》2009,418(1):93-101
Mst1 (mammalian sterile 20-like kinase 1) is a ubiquitously expressed serine/threonine kinase and its activation in the heart causes cardiomyocyte apoptosis and dilated cardiomyopathy. Its myocardial substrates, however, remain unknown. In a yeast two-hybrid screen of a human heart cDNA library with a dominant-negative Mst1 (K59R) mutant used as bait, cTn [cardiac Tn (troponin)] I was identified as an Mst1-interacting protein. The interaction of cTnI with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK-293 cells (human embryonic kidney cells) and native cardiomyocytes, in which cTnI interacted with full-length Mst1, but not with its N-terminal kinase fragment. in vitro phosphorylation assays demonstrated that cTnI is a sensitive substrate for Mst1. In contrast, cTnT was phosphorylated by Mst1 only when it was incorporated into the Tn complex. MS analysis indicated that Mst1 phosphorylates cTnI at Thr(31), Thr(51), Thr(129) and Thr(143). Substitution of Thr(31) with an alanine residue reduced Mst1-mediated cTnI phosphorylation by 90%, whereas replacement of Thr(51), Thr(129) or Thr(143) with alanine residues reduced Mst1-catalysed cTnI phosphorylation by approx. 60%, suggesting that Thr(31) is a preferential phosphorylation site for Mst1. Furthermore, treatment of cardiomyocytes with hydrogen peroxide rapidly induced Mst1-dependent phosphorylation of cTnI at Thr(31). Protein epitope analysis and binding assays showed that Mst1-mediated phosphorylation modulates the molecular conformation of cTnI and its binding affinity to TnT and TnC, thus indicating functional significances. The results of the present study suggest that Mst1 is a novel mediator of cTnI phosphorylation in the heart and may contribute to the modulation of myofilament function under a variety of physiological and pathophysiological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号