首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17158篇
  免费   1405篇
  国内免费   547篇
  19110篇
  2024年   25篇
  2023年   128篇
  2022年   337篇
  2021年   540篇
  2020年   406篇
  2019年   506篇
  2018年   607篇
  2017年   486篇
  2016年   697篇
  2015年   1001篇
  2014年   1125篇
  2013年   1284篇
  2012年   1604篇
  2011年   1383篇
  2010年   865篇
  2009年   789篇
  2008年   984篇
  2007年   903篇
  2006年   813篇
  2005年   662篇
  2004年   629篇
  2003年   551篇
  2002年   424篇
  2001年   303篇
  2000年   274篇
  1999年   231篇
  1998年   129篇
  1997年   131篇
  1996年   116篇
  1995年   99篇
  1994年   95篇
  1993年   79篇
  1992年   117篇
  1991年   109篇
  1990年   91篇
  1989年   72篇
  1988年   72篇
  1987年   62篇
  1986年   52篇
  1985年   52篇
  1984年   34篇
  1983年   33篇
  1982年   23篇
  1981年   27篇
  1980年   14篇
  1979年   17篇
  1978年   22篇
  1975年   11篇
  1974年   11篇
  1972年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Ergosterol, a membrane sterol found in fungi but not in plants, was used to estimate live mycelial biomass in ectomycorrhizae. Loblolly pine (Pinus taeda L.) seeds were sown in April 1993 and grown with standard nursery culture practices. Correlations between total seedling ergosterol and visual assessment of mycorrhizal colonization were high during July and August but low as ectomycorrhizal development continued into the growing season. Percentages of mycelial dry weight over lateral roots decreased from 9% in July to 2.5% in November because seedling lateral root dry weight accumulated faster than mycelial dry weight. Total ergosterol per seedling increased from July through February. As lateral root dry weight ceased to increase during winter months, ectomycorrhizal mycelia became the major carbohydrate sink of pine seedlings. No distinctive seasonal pattern of soil ergosterol content was observed. The impact of ectomycorrhizal fungi on plant carbohydrate source-sink dynamics can be quantitatively estimated with ergosterol analysis but not with conventional visual determination.  相似文献   
22.
Effects of two growth media, age of cells and phase of sporulation on heat resistance of Hansenula anomala were determined. Cells were grown on two solid media, McClary's acetate and V8 juice agars, at 21 ° C for 16 days. Heat resistance of cells was determined in 0.06 M potassium phosphate buffer at 48 ° C. Heat-stressed cells were plated on four recovery media: yeast extract-malt extract-peptone-glucose (YMPG), pH 7.0; YMPG, pH 3.5; YMPG containing 6% NaCl, pH 7.0; and YMPG containing 20% sucrose, pH 7.0. The composition of sporulation medium influenced the extent of sporulation and the relative heat resistance of sporulating cells. One-day-old cells were the most sensitive to heat. The heat resistance of cells was generally increased as the incubation time was extended to 16 days. Heat treatment caused a greater increase in sensitivity to NaCl than to sucrose or acid pH in recovery media. Young cells were more sensitive to NaCl than were older cells.  相似文献   
23.
The structure of the prosthetic group of citrate lyase (Klebsiella aerogenes) was studied by nuclear magnetic resonance and mass spectrometry. The spectra at 360 MHz of the nucleoside moiety (2'-ribosyladenosine) show the absence of 2'-hydroxyl proton, thus confirming the 2' position as the site of attachment of the second ribose moiety to the dephospho-CoA. This glycosidic linkage is found to be alpha(1" leads to 2') and is identical to that of poly(ADP-ribose). Studies of permethylation products by mass spectrometry support the above conclusion regarding the location of the ribosidic linkage.  相似文献   
24.
T M Cao  M T Sung 《Biochemistry》1982,21(14):3419-3427
Histones have been cross-linked to DNA in chicken erythrocyte nuclei and chromatin by using ultraviolet light irradiation at 254 nm. Following irradiation, cross-linked histone-DNA adducts were isolated and purified by hydroxylapatite chromatography, and the DNA component was subjected to acid hydrolysis. Of several hydrolysis techniques investigated, trichloroacetic hydrolysis of the DNA component of the adducts was found to be most effective. Histones isolated from hydrolyzed histone-DNA adducts were characterized by gel electrophoresis and fingerprint analysis. No histone-histone protein adducts were observed. All histone fractions have been shown to cross-link DNA in nuclei or chromatin by utilizing the technique employed, but with different propensities. The order of observed cross-linking, deduced from kinetic experiments, is H1 + H5, H3 greater than H4 greater than H2A much greater than H2B. The preferential binding of the core histone H3, as compared to the other core histones, is discussed in light of recent data concerning histone-DNA interactions and nucleosome structure. The use of the ultraviolet light technique as a conformational probe to study chromatin is also discussed.  相似文献   
25.
J Q Su  J M Lachin 《Biometrics》1992,48(4):1033-1042
Many studies involve the collection of multivariate observations, such as repeated measures, on two groups of subjects who are recruited over time, i.e., with staggered entry of subjects. Various marginal distribution-free multivariate methods have been proposed for the analyses of such multivariate observations where some measures may be missing at random. Using the multivariate U statistic of Wei and Johnson (1985, Biometrika 72, 359-364), we describe the group sequential analysis of such a study where the multivariate observations are observed sequentially--both within and among subjects. We describe a multivariate generalization of the Hodges and Lehmann (1963, Annals of Mathematical Statistics 34, 598-611) estimator of a location shift that can be obtained via the multivariate U statistic with the Mann-Whitney-Wilcoxon kernel. We then describe large-sample group sequential interval estimators and tests based on an aggregate estimate of the location shift combined over all of the repeated measures. We also describe how the same steps could be employed to perform a group sequential analysis based on any one of the variety of marginal multivariate methods that have been proposed. These methods are applied to a real-life example.  相似文献   
26.
The effects of monopalmitoylphosphatidylcholine (MPPC or lysophosphatidylcholine) and a series of short-chain primary alcohols (ethanol, 1-butanol and 1-hexanol) on cell shape, hemolysis, viscoelastic properties and membrane lipid packing of human red blood cells (RBCs) were studied. For MPPC, the effective membrane concentration to induce the formation of stage 3 echinocytes (8 x 10(6) molecules per cell) was one order of magnitude lower than that needed to induce 50% hemolysis (7 x 10(7) molecules per cell). In contrast, short-chain alcohols induced both shape changes and hemolysis within close concentration range (2.5 x 10(8) to 3.5 x 10(8) molecules per cell). Viscoelastic properties of the RBCs were studied by micropipette aspiration and correlated with shape change. Ethanol-treated RBCs showed a decrease in membrane elastic modulus and an increase in membrane viscosity in the recovery phase at the early stage of shape change. MPPC-treated cells showed the same type of viscoelastic changes, but these were not observed until the formation of stage 2 echinocytes. High-resolution solid-state 13C nuclear magnetic resonance technique was applied to study membrane lipid packing in the ghost membrane by following the chemical shift of hydrocarbon chains. Both MPPC and ethanol caused the 13C-NMR chemical shift to move upfield, indicating that membrane lipids were expanded due to the intercalation of these exogenous molecules. Using data obtained from model compounds, we convert values of chemical shift into a lipid packing parameter, i.e., number of gauche bonds for fatty acyl hydrocarbon chains. Approximately 10(8) interacting molecules per cell are required to induce a detectable change of lipid packing by both MPPC and ethanol. The results indicate that homolysis occurs at a smaller surface area for MPPC- than ethanol-treated RBCs. Our findings suggest that progressive changes in the molecular packing in the membrane lead eventually to hemolysis, but the mode responsible for shape transformation varies with these amphipaths.  相似文献   
27.
28.
29.
Identifying the mechanisms that underlie the assembly of plant communities is critical to the conservation of terrestrial biodiversity. However, it is seldom measured or quantified how much deterministic versus stochastic processes contribute to community assembly in alpine meadows. Here, we measured the decay in community similarity with spatial and environmental distance in the Zoige Plateau. Furthermore, we used redundancy analysis (RDA) to divide the variations in the relative abundance of plant families into four components to assess the effects of environmental and spatial. Species assemblage similarity liner declined with geographical distance (p < .001, R 2 = .6388), and it decreased significantly with increasing distance of total phosphorus (TP), alkali‐hydrolyzable nitrogen (AN), available potassium (AK), nitrate nitrogen (NO3 +–N), and ammonia nitrogen (NH4 +–N). Environmental and spatial variables jointly explained a large proportion (55.2%) of the variation in the relative abundance of plant families. Environmental variables accounted for 13.1% of the total variation, whereas spatial variables accounted for 11.4%, perhaps due to the pronounced abiotic gradients in the alpine areas. Our study highlights the mechanism of plant community assembly in the alpine ecosystem, where environmental filtering plays a more important role than dispersal limitation. In addition, a reasonably controlled abundance of Compositae (the family with the highest niche breadth and large niche overlap value with Gramineae and Cyperaceae) was expected to maintain sustainable development in pastoral production. These results suggest that management measures should be developed with the goal of improving or maintaining suitable local environmental conditions.  相似文献   
30.
Background:The tremendous global health burden related to COVID-19 means that identifying determinants of COVID-19 severity is important for prevention and intervention. We aimed to explore long-term exposure to ambient air pollution as a potential contributor to COVID-19 severity, given its known impact on the respiratory system.Methods:We used a cohort of all people with confirmed SARS-CoV-2 infection, aged 20 years and older and not residing in a long-term care facility in Ontario, Canada, during 2020. We evaluated the association between long-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ground-level ozone (O3), and risk of COVID-19-related hospital admission, intensive care unit (ICU) admission and death. We ascertained individuals’ long-term exposures to each air pollutant based on their residence from 2015 to 2019. We used logistic regression and adjusted for confounders and selection bias using various individual and contextual covariates obtained through data linkage.Results:Among the 151 105 people with confirmed SARS-CoV-2 infection in Ontario in 2020, we observed 8630 hospital admissions, 1912 ICU admissions and 2137 deaths related to COVID-19. For each interquartile range increase in exposure to PM2.5 (1.70 μg/m3), we estimated odds ratios of 1.06 (95% confidence interval [CI] 1.01–1.12), 1.09 (95% CI 0.98–1.21) and 1.00 (95% CI 0.90–1.11) for hospital admission, ICU admission and death, respectively. Estimates were smaller for NO2. We also estimated odds ratios of 1.15 (95% CI 1.06–1.23), 1.30 (95% CI 1.12–1.50) and 1.18 (95% CI 1.02–1.36) per interquartile range increase of 5.14 ppb in O3 for hospital admission, ICU admission and death, respectively.Interpretation:Chronic exposure to air pollution may contribute to severe outcomes after SARS-CoV-2 infection, particularly exposure to O3.

By November 2021, COVID-19 had caused more than 5 million deaths globally1 and more than 29 400 in Canada.2 The clinical manifestations of SARS-CoV-2 infection range from being asymptomatic to multiple organ failure and death. Identifying risk factors for COVID-19 severity is important to better understand etiological mechanisms and identify populations to prioritize for screening, vaccination and medical treatment. Risk factors for severity of COVID-19 include male sex, older age, pre-existing medical conditions and being from racialized communities.35 More recently, ambient air pollution has been implicated as a potential driver of COVID-19 severity.610Long-term exposure to ambient air pollution, a major contributor to global disease burden,11 could increase the risk of severe COVID-19 outcomes by several mechanisms. Air pollutants can reduce individuals’ pulmonary immune responses and antimicrobial activities, boosting viral loads.8 Air pollution can also induce chronic inflammation and overexpression of the alveolar angiotensin-converting enzyme 2 (ACE) receptor,7 the key receptor that facilitates SARS-CoV-2 entry into cells.12,13 Exposure to air pollution contributes to chronic conditions, such as cardiovascular disease, that are associated with unfavourable COVID-19 prognosis, possibly owing to persistent immune activation and excessive amplification of cytokine development.10 Thus, greater exposure to long-term air pollution may lead to severe COVID-19 outcomes.Reports exist of positive associations between long-term exposure to particulate matter with diameters equal to or smaller than 2.5 or 10 μm (PM2.5 and PM10), ground-level ozone (O3) and nitrogen dioxide (NO2), and metrics of COVID-19 severity (e.g., mortality and case fatality rate).810 However, most studies to date have used ecological and cross-sectional designs, owing to limited access to individual data, which leads to ambiguity in interpreting the results, thus hindering their influence on policy. 6,14 Ecological designs do not allow for disentangling the relative impacts of air pollution on individual susceptibility to infection and disease severity.14 Residual confounding by factors such as population mobility and social interactions is also problematic. Therefore, a cohort study with data on individuals with SARS-CoV-2 is a more appropriate design.6,14 Studies that have used individual data were conducted in specific subpopulations15,16 or populations with few severe cases,17 or had limited data on individual exposure to air pollutants.18 In Canada, 1 ecological study found a positive association between long-term exposure to PM2.5 and COVID-19 incidence,19 but no published study has explored the association between air pollution and COVID-19 severity.We aimed to examine the associations between long-term exposure to 3 common air pollutants (PM2.5, NO2 and O3) and key indicators of COVID-19 severity, including hospital admission, intensive care unit (ICU) admission and death, using a large prospective cohort of people with confirmed SARS-CoV-2 infection in Ontario, Canada, in 2020. The air contaminants PM2.5, NO2 and O3 are regularly monitored by the Canadian government, and are key pollutants that are considered when setting air-quality policies. They originate from varying sources (NO2 is primarily emitted during combustion of fuel, O3 is primarily formed in air by chemical reactions of nitrogen oxides and volatile organic compounds, and PM2.5 can be emitted during combustion or formed by reactions of chemicals like sulphur dioxide and nitrogen oxides in air) and they may affect human health differently.20,21,22  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号