首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17991篇
  免费   1439篇
  国内免费   367篇
  19797篇
  2024年   30篇
  2023年   117篇
  2022年   348篇
  2021年   484篇
  2020年   368篇
  2019年   455篇
  2018年   553篇
  2017年   444篇
  2016年   639篇
  2015年   968篇
  2014年   1151篇
  2013年   1236篇
  2012年   1633篇
  2011年   1466篇
  2010年   971篇
  2009年   836篇
  2008年   1122篇
  2007年   1031篇
  2006年   890篇
  2005年   760篇
  2004年   771篇
  2003年   664篇
  2002年   497篇
  2001年   362篇
  2000年   304篇
  1999年   267篇
  1998年   137篇
  1997年   105篇
  1996年   83篇
  1995年   87篇
  1994年   83篇
  1993年   54篇
  1992年   111篇
  1991年   98篇
  1990年   80篇
  1989年   67篇
  1988年   59篇
  1987年   38篇
  1986年   43篇
  1985年   39篇
  1984年   26篇
  1983年   29篇
  1982年   25篇
  1981年   26篇
  1980年   27篇
  1979年   25篇
  1978年   19篇
  1977年   22篇
  1975年   18篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
181.
Glucose uptake from the bloodstream is the rate-limiting step in whole body glucose utilization, and is regulated by a family of membrane proteins called glucose transporters (GLUTs). Although GLUT4 is the predominant isoform in insulin-sensitive tissues, there is recent evidence that GLUT12 could be a novel second insulin-sensitive GLUT. However, its physiological role in the heart is not elucidated and the regulation of insulin-stimulated myocardial GLUT12 translocation is unknown. In addition, the role of GLUT12 has not been investigated in the diabetic myocardium. Thus, we hypothesized that, as for GLUT4, insulin regulates GLUT12 translocation to the myocardial cell surface, which is impaired during diabetes. Active cell surface GLUT (-4 and -12) content was quantified (before and after insulin stimulation) by a biotinylated photolabeled assay in both intact perfused myocardium and isolated cardiac myocytes of healthy and type 1 diabetic rodents. GLUT localization was confirmed by immunofluorescent confocal microscopy, and total GLUT protein expression was measured by Western blotting. Insulin stimulation increased translocation of GLUT-4, but not -12, in the healthy myocardium. Total GLUT4 content of the heart was decreased during diabetes, while there was no difference in total GLUT12. Active cell surface GLUT12 content was increased in the diabetic myocardium, potentially as a compensatory mechanism for the observed downregulation of GLUT4. Collectively, our data suggest that, in contrast to GLUT4, insulin does not mediate GLUT12 translocation, which may function as a basal GLUT located primarily at the cell surface in the myocardium.  相似文献   
182.
183.
The butterfly fauna on the Korean peninsula are comprised of both the Palearctic and Oriental species. We hypothesized that the Oriental species (immigrated across the sea) tend to have a wider niche breadth compared with the Palearctic species (immigrated from the continent) since the former migrates long distances across the sea and has to adapt to new environments. We tested this hypothesis using Korean butterfly data on distribution, habitat, food and life history traits. The distribution and ecological traits such as habitat breadth, overwintering stage, and voltinism of the Oriental species were found to be significantly different from the Palearctic species. However, the diet breadth and food plant type were not different. These results partly confirm the peninsula niche breadth hypothesis, which predicted that Oriental species have a broader niche breadth than Palearctic species.  相似文献   
184.
Kang  Wenjuan  Shi  Shangli  Xu  Lin 《Annals of microbiology》2019,69(2):183-183
The authors wish to clarify that the right Fund No. of National Natural Science Foundation of China (NSFC) is 31560666. The Fund No. in the original article was wrong. The authors apologise for this error.  相似文献   
185.
PTK6 (also known as Brk) is a non-receptor-tyrosine kinase containing SH3, SH2, and catalytic domains, that is expressed in more than 60% of breast carcinomas but not in normal mammary tissues. To analyze PTK6-interacting proteins, we have expressed Flag-tagged PTK6 in HEK293 cells and performed co-immunoprecipitation assays with Flag antibody-conjugated agarose. A 164-kDa protein in the precipitated fraction was identified as ARAP1 (also known as centaurin δ-2) by MALDI-TOF mass analysis. ARAP1 associated with PTK6 in an EGF/EGF receptor (EGFR)-dependent manner. In addition, the SH2 domain of PTK6, particularly the Arg105 residue that contacts the phosphate group of the tyrosine residue, was essential for the association. Moreover, PTK6 phosphorylated residue Tyr231 in the N-terminal domain of ARAP1. Expression of ARAP1, but not of the Y231F mutant, inhibited the down-regulation of EGFR in HEK293 cells expressing PTK6. Silencing of endogenous PTK6 expression in breast carcinoma cells decreased EGFR levels. These results demonstrate that PTK6 enhances EGFR signaling by inhibition of EGFR down-regulation through phosphorylation of ARAP1 in breast cancer cells.  相似文献   
186.
Hepatitis C virus (HCV) is able to induce autophagy via endoplasmic reticulum (ER) stress, but the exact molecular signaling pathway is not well understood. We found that the activity of the mechanistic target of rapamycin complex 1 (MTORC1) was inhibited in Huh7 cells either harboring HCV-N (genotype 1b) full-genomic replicon or infected with JFH1 (genotype 2a) virus, which led to the activation of UNC-51-like kinase 1 (ULK1) and thus to autophagy. We then analyzed activity upstream of MTORC1, and found that both protein kinase, AMP-activated, α (PRKAA, including PRKAA1 and PRKAA2, also known as AMP-activated protein kinase, AMPKα) and AKT (refers to pan AKT, including three isoforms of AKT1-3, also known as protein kinase B, PKB) were inhibited by HCV infection. The inhibition of the AKT-TSC-MTORC1 pathway contributed to upregulating autophagy, but inhibition of PRKAA downregulated autophagy. The net effect on autophagy was from AKT, which overrode the inhibition effect from PRKAA. It was further found that HCV-induced ER stress was responsible for the inhibition of the AKT pathway. Metformin, a PRKAA agonist, inhibited HCV replication not only by activating PRKAA as previously reported, but also by activating AKT independently of the autophagy pathway. Taken together, our data suggested HCV inhibited the AKT-TSC-MTORC1 pathway via ER stress, resulting in autophagy, which may contribute to the establishment of the HCV-induced autophagy.  相似文献   
187.
Kang WH  Park YD  Hwang JS  Park HM 《FEBS letters》2007,581(18):3473-3478
Recent studies have shown that global gene expression during oxidative stress in Schizosaccharomyces pombe is regulated by stress-induced activation and binding of Csx1 to atf1(+) mRNA. However, the kinase responsible for the activation of Csx1 has not been identified. Here, we describe, for the first time, that Csx1 is phosphorylated by S. pombe LAMMER kinase, Lkh1, under oxidative conditions and that the stress-activated binding of the Csx1 to the atf1(+) mRNA was also affected by Lkh1 and Spc1. These data indicate that concerted actions of Spc1 and Lkh1 are required for the activation of Csx1 during oxidative condition in the fission yeast S. pombe.  相似文献   
188.
A Gram-negative, non-motile, non-spore-forming, small, orange, rod-shaped bacterium was isolated from soil in South Korea and characterized to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence examination revealed that strain PB323T belongs to the family Sphingomonadaceae. The highest degree of sequence similarity was found with Sphingomonas kaistensis PB56T (98.9%), followed by Sphingomonas astaxanthinifaciens TDMA-17T (98.3%). Chemotaxonomic characteristics (the G+C content of the genomic DNA 69.0 mol%, Q-10 quinone system, C18:1 ω7c/ω9t/ω12t, C16:1 ω7c/C15:0 iso 2OH, C17:1 ω6c, and C16:0 as the major fatty acids) corroborated assignment of strain PB323T to the genus Sphingomonas. Results of physiological and biochemical tests clearly demonstrate that strain PB323T represents a distinct species and support its affiliation with the genus Sphingomonas. Based on these data, PB323T (=KCTC 12341T =JCM 16603T =KEMB 9004-003T) should be classified as a type strain of a novel species, for which the name Sphingomonas humi sp. nov. is proposed.  相似文献   
189.
Magnolol, an active component extracted from Magnolia officinalis, has been reported to have protective effect on ischemia and reperfusion (I/R)-induced injury in experimental animals. The aim of the present investigation was to further evaluate the mechanism(s) by which magnolol reduces I/R-induced myocardial injury in rats in vivo. Under anesthesia, left anterior descending (LAD) coronary artery was occluded for 30 min followed by reperfusion for 24 h (for infarct size and cardiac function analysis). In some experiments, reperfusion was limited to 1 h or 6 h for analysis of biochemical and molecular events. Magnolol and DMSO solution (vehicle) were injected intra-peritoneally 1 h prior to I/R insult. The infarct size was measured by TTC technique and heart function was monitored by Millar Catheter. Apoptosis related events such as p-ERK, p-Bad, Bcl-xl and cytochrome c expression were evaluated by Western blot analysis and myocardial caspase-3 activity was also measured. Magnolol (10 mg/kg) reduced infarct size by 50% (P < 0.01 versus vehicle), and also improved I/R-induced myocardial dysfunction. Left ventricular systolic pressure and positive and negative maximal values of the first derivative of left ventricular pressure (dP/dt) were significantly improved in magnolol-treated rats. Magnolol increased the expression of phosphor ERK and Bad which resulted in inhibition of myocardial apoptosis as evidenced by TUNEL analysis and DNA laddering experiments. Application of PD 98059, a selective MEK1/2 inhibitor, strongly antagonized the effect of magnolol. Taken together, we concluded that magnolol inhibits apoptosis through enhancing the activation of ERK1/2 and modulation of the Bcl-xl proteins which brings about reduction of infarct size and improvement of cardiac function in I/R-induced injury.  相似文献   
190.
Recent site‐resolved hydrogen exchange measurements have uncovered significant discrepancies between simulations and experimental data during protein folding, including the excessive intramolecular hydrogen bonds in simulations. This finding indicates a possibility that intramolecular charge–charge interactions have not included sufficient dielectric screening effect of the electronic polarization. Scaling down peptide atomic charges according to the optical dielectric constant is tested in this study. As a result, the number of intramolecular hydrogen bonds is lower than using unscaled atomic charges while reaching the same levels of helical contents or β‐hairpin backbone hydrogen bonds, because van der Waals interactions contribute substantially to peptide folding in water. Reducing intramolecular charge–charge interactions and hydrogen bonding increases conformational search efficiency. In particular, it reduces the equilibrium helical content in simulations using AMBER force field and the energy barrier in folding simulations using CHARMM force field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号