首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16554篇
  免费   1292篇
  国内免费   7篇
  2023年   54篇
  2022年   192篇
  2021年   301篇
  2020年   207篇
  2019年   290篇
  2018年   415篇
  2017年   346篇
  2016年   567篇
  2015年   847篇
  2014年   980篇
  2013年   1099篇
  2012年   1537篇
  2011年   1292篇
  2010年   871篇
  2009年   795篇
  2008年   1064篇
  2007年   1069篇
  2006年   951篇
  2005年   806篇
  2004年   808篇
  2003年   693篇
  2002年   535篇
  2001年   355篇
  2000年   324篇
  1999年   235篇
  1998年   123篇
  1997年   96篇
  1996年   66篇
  1995年   62篇
  1994年   47篇
  1993年   33篇
  1992年   72篇
  1991年   74篇
  1990年   68篇
  1989年   66篇
  1988年   60篇
  1987年   42篇
  1986年   44篇
  1985年   47篇
  1984年   33篇
  1983年   31篇
  1982年   19篇
  1981年   23篇
  1980年   15篇
  1979年   18篇
  1978年   20篇
  1977年   14篇
  1974年   16篇
  1973年   20篇
  1972年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The effects of 6-aminonicotinamide (6-AN) on the levels of soluble proteins and enzyme activities in various tissues of Japanese quail were investigated. SDS-polyacrylamide gel electrophoresis showed that the soluble proteins with molecular masses corresponding to 160.4 and 52.5 kDa were either missing or present at lower concentrations in the brain of the 6-AN treated group compared to those in the control group. The soluble liver proteins with molecular masses 200, 120 and 70.5 kDa were missing in the treated group compared to those in the control while those of a molecular mass 15.1 kDa were found to be present at higher concentrations. Similarly, treatment with 6-AN decreased the concentration of soluble proteins in pectoral muscle with molecular masses 92.3, 54.5, 43.5, 41.2, 34.5, 27.5, 20.1 and 17.5 kDa and increased those with molecular masses 96.5, 37.7, 25.0, 19.3, 16.6, 13.8 and 10.8 kDa. In the heart, soluble proteins with molecular mass 84.6 kDa were increased. There was a marked reduction in the treatment group in the concentration of NAD in pectoral muscle but not in other tissues. A similar observation was also made with total RNA levels. The specific activity of malic enzyme was markedly increased by 6-AN treatment in the kidney and pectoral muscle but reduced in the liver. 6-Phosphogluconate dehydrogenase and lactate dehydrogenase activities were markedly reduced in the liver. Glyceraldehyde-3-phosphate dehydrogenase activity was significantly decreased in liver and pectoral muscle. NAD glycohydrolase activity was markedly decreased in pectoral muscle. Acetylcholinesterase activity was markedly reduced in liver but was enhanced in pectoral muscle. The results suggest that the metabolic actions of 6-AN are specific for certain proteins in the liver and muscle with the effect being most pronounced in muscle. The effects are also quite distinct from those shown by its analogue 3-acetylpyridine.  相似文献   
992.
993.
Work with cereals (barley and wheat) and a legume (Medicago truncatula) has established thioredoxin h (Trx h) as a central regulatory protein of seeds. Trx h acts by reducing disulfide (S-S) groups of diverse seed proteins (storage proteins, enzymes, and enzyme inhibitors), thereby facilitating germination. Early in vitro protein studies were complemented with experiments in which barley seeds with Trx h overexpressed in the endosperm showed accelerated germination and early or enhanced expression of associated enzymes (α-amylase and pullulanase). The current study extends the transgenic work to wheat. Two approaches were followed to alter the expression of Trx h genes in the endosperm: (1) a hordein promoter and its protein body targeting sequence led to overexpression of Trx hS, and (2) an antisense construct of Trx h9 resulted in cytosolic underexpression of that gene (Arabidopsis designation). Underexpression of Trx h9 led to effects opposite to those observed for overexpression Trx h5 in barley--retardation of germination and delayed or reduced expression of associated enzymes. Similar enzyme changes were observed in developing seeds. The wheat lines with underexpressed Trx showed delayed preharvest sprouting when grown in the greenhouse or field without a decrease in final yield. Wheat with overexpressed Trx h5 showed changes commensurate with earlier in vitro work: increased solubility of disulfide proteins and lower aUergenicity of the gliadin fraction. The results are further evidence that the level of Trx h in cereal endosperm determines fundamental properties as well as potential applications of the seed.  相似文献   
994.
In this study, crab shells were recycled as an adsorbent for the removal of phosphate. The effects of shell particle size, temperature, pH and phosphate concentration on phosphate removal were investigated. Shell particles less than 1000 μm in diameter removed more than 85% of 500 mg/L phosphate in 24 h while particles 3350 μm in diameter exhibited only 50% removal efficiency. Temperature showed negligible effect on phosphate removal in the range of 15–45 °C. Although removal efficiency was highest at pH 2.0, the efficiency remained 50–60% at pH of 4.0–10.0. The maximum removal capacity was calculated as 108.9 mg/g through Langmuir isotherm plotting, which was 17.0 and 4.7 times higher than those of coal fly ash and scallop shells, respectively. Although calcium carbonate played an active role in the removal of phosphate, both proteins composing 12.5% of crab shells and cellulose-like backbone of the crab shells also played an important role in phosphate removal.  相似文献   
995.
EMBRYONIC FLOWER (EMF) genes are required to maintain vegetative development via repression of flower homeotic genes in Arabidopsis. Removal of EMF gene function caused plants to flower upon germination, producing abnormal and sterile flowers. The pleiotropic effect of ernfl mutation suggests its requirement for gene programs involved in diverse developmental processes. Transgenic plants harboring EMF1 promoter::glucuronidase (GUS) reporter gene were generated to investigate the temporal and spatial expression pattern of EMF1. These plants displayed differential GUS activity in vegetative and flower tissues, consistent with the role of EMF1 in regulating multiple gene programs. EMFI::GUS expression pattern in emf mutants suggests organ-specific auto-regulation. Sense- and antisense (as) EMF1 cDNA were expressed under the control of stage- and tissue-specific promoters in transgenic plants. Characterization of these transgenic plants showed that EMF1 activity is required in meristematic as well as differentiating tissues to rescue emf mutant phenotype. Temporal removal or reduction of EMF1 activity in the embryo or shoot apex of wild-type seedlings was sufficient to cause early flowering and terminal flower formation in adult plants. Such reproductive cell memory is reflected in the flower MADS-box gene activity expressed prior to flowering in these early flowering plants. However, temporal removal of EMF1 activity in flower meristem did not affect flower development. Our results are consistent with EMF1's primary role in repressing flowering in order to allow for vegetative growth.  相似文献   
996.
We describe an in situ fluorescence optical detection system to demonstrate real‐time and non‐invasive detection of reaction products in a microfluidic device while under perfusion within a standard incubator. The detection system is designed to be compact and robust for operation inside a mammalian cell culture incubator for quantitative detection of fluorescent signal from microfluidic devices. When compared to a standard plate reader, both systems showed similar biphasic response curves with two linear regions. Such a detection system allows real‐time measurements in microfluidic devices with cells without perturbing the culture environment. In a proof‐of‐concept experiment, the cytochrome P450 1A1/1A2 activity of a hepatoma cell line (HepG2/C3A) was monitored by measuring the enzymatic conversion of ethoxyresorufin to resorufin. The hepatoma cell line was embedded in MatrigelTM construct and cultured in a microfluidic device with medium perfusion. The response of the cells, in terms of P450 1A1/1A2 activity, was significantly different in a plate well system and the microfluidic device. Uninduced cells showed almost no activity in the plate assay, while uninduced cells in MatrigelTM with perfusion in a microfluidic device showed high activity. Cells in the plate assay showed a significant response to induction with 3‐Methylcholanthrene while cells in the microfluidic device did not respond to the inducer. These results demonstrate that the system is a potentially useful method to measure cell response in a microfluidic system. Biotechnol. Bioeng. 2009; 104: 516–525 © 2009 Wiley Periodicals, Inc.  相似文献   
997.
998.
Perovskite oxide ceramics attracts significant attention as a strong candidate of bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalyst for the metal‐air batteries. Numerous approaches to the viability of bifunctional perovskite electrocatalyst represent that the electro­chemical performance is highly correlated with defect chemistry, surface structure, and overall polycrystalline perovskite structure. By making use of the intrinsic flexibility of internal structure and high nonstoichiometry in perovskite oxide, the heat treatment effect of the complex Ba0.5Sr0.5CoxFe1‐xO3‐δ (x = 0.2 and 0.8) perovskites in argon atmosphere at 950 °C (Ar‐BSCF5582 and Ar‐BSCF5528) on the surface structure/defect chemistry and electrocatalytic performance is intensively investigated. Upon heat‐treatment in argon atmosphere, the amorphous thickness layer increases from ≈20 to 180–200 nm in BSCF5582, while there is little change in BSCF5528 with ≈20 nm. The electrocatalytic performance of BSCF5582 catalyst both in ORR and OER deteriorates seriously, while Ar‐BSCF5528 demonstrates a significant increase of electro­chemical performance in ORR. This study demonstrates that the electrochemical performances of a perovskite catalyst can be significantly determined by the simultaneous modification of both surface structure and internal defect chemistry, which are explained with transmission electron microscopy and atomic‐selective X‐ray absorption fine structure analyses, respectively.  相似文献   
999.
In materials containing 1D lithium diffusion channels, cation disorder can strongly affect lithium intercalation processes. This work presents a model to explain the unusual transport properties of monoclinic LiMnBO3, a material determined by scanning electron microscopy and synchrotron X‐ray diffraction to contain a wide particle size distribution and Mn/Li antisite disorder. First‐principles calculations indicate that Mn occupying Li sites obstruct the 1D lithium diffusion channel along the [001] direction. While channel blockage by the antisites significantly lowers Li mobility in large particles, Li kinetics in small particles and particle surfaces are found to be less sensitive to the presence of antisite disorder. Thus, in an electrode containing a large particle size distribution, smaller particles have higher Li mobility, and the measured Li diffusivity as determined by potentiostatic intermittent titration test varies as a function of particle size. The Li capacity in monoclinic LiMnBO3 is kinetically controlled by the fraction of large particles with antisite disorder, but is not intrinsically limited. These results strongly suggest that particle nanosizing will significantly enhance the electrochemical performance of LiMnBO3.  相似文献   
1000.
Highly efficient solar cells with sustainable performance under severe mechanical deformations are in great demand for future wearable power supply devices. In this regard, numerous studies have progressed to implement flexible architecture to high‐performance devices such as perovskite solar cells. However, the absence of suitable flexible and stretchable materials has been a great obstacle in the replacement of largely utilized transparent conducting oxides that are limited in flexibility. Here, a shape recoverable polymer, Noland Optical Adhesive 63, is utilized as a substrate of perovskite solar cell to enable complete shape recovery of the device upon sub‐millimeter bending radii. The employment of stretchable electrodes prevents mechanical damage of the perovskite layer. Before and after bending at a radius of 1 mm, power conversion efficiency (PCE) is measured to be 10.75% and 10.4%, respectively. Additionally, the shape recoverable device demonstrates a PCE of 6.07% after crumpling. The mechanical properties of all the layers are characterized by nanoindentation. Finite element analysis reveals that the outstanding flexibility of the perovskite layer enables small plastic strain distribution on the deformed device. These results clearly demonstrated that this device has great potential to be utilized in stretchable power supply applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号