首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8872篇
  免费   795篇
  国内免费   4篇
  2023年   21篇
  2022年   75篇
  2021年   167篇
  2020年   133篇
  2019年   171篇
  2018年   270篇
  2017年   228篇
  2016年   360篇
  2015年   468篇
  2014年   574篇
  2013年   647篇
  2012年   831篇
  2011年   727篇
  2010年   509篇
  2009年   446篇
  2008年   611篇
  2007年   562篇
  2006年   515篇
  2005年   433篇
  2004年   394篇
  2003年   358篇
  2002年   257篇
  2001年   140篇
  2000年   106篇
  1999年   88篇
  1998年   61篇
  1997年   47篇
  1996年   34篇
  1995年   37篇
  1994年   27篇
  1993年   16篇
  1992年   38篇
  1991年   26篇
  1990年   27篇
  1989年   24篇
  1988年   27篇
  1987年   18篇
  1986年   20篇
  1985年   14篇
  1984年   17篇
  1983年   13篇
  1982年   13篇
  1981年   16篇
  1980年   10篇
  1979年   9篇
  1978年   8篇
  1975年   8篇
  1973年   7篇
  1972年   8篇
  1965年   7篇
排序方式: 共有9671条查询结果,搜索用时 31 毫秒
91.
Direct conversion of mechanical energy into direct current (DC) by triboelectric nanogenerators (TENGs) is one of the desired features in terms of energy conversion efficiency. Although promising applications have been reported using the triboelectric effect, effective DC generating TENGs must be developed for practical purposes. Here, it is reported that continuous DC generation within a TENG itself, without any circuitry, can be achieved by triggering air breakdown via triboelectrification. It is demonstrated that DC generation occurs in combination with i) charge accumulation to generate air breakdown, ii) incident discharge (microdischarge), and iii) conveyance of charges to make the device sustainable. 10.5 mA m?2 of output current and 10.6 W m?2 of output power at 33 MΩ load resistance are achieved. Compared to the best DC generating TENGs ever reported, the TENG in this present study generates about 20 times larger root‐mean square current density.  相似文献   
92.
A novel hybrid of small core@shell structured CoSx@Cu2MoS4 uniformly hybridizing with a molybdenum dichalcogenide/N,S‐codoped graphene hetero‐network (CoSx@Cu2MoS4‐MoS2/NSG) is prepared by a facile route. It shows excellent performance toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The hybrid exhibits rapid kinetics for ORR with high electron transfer number of ≈3.97 and exciting durability superior to commercial Pt/C. It also demonstrates great potential with remarkable stability for HER and OER, requiring low overpotential of 118.1 and 351.4 mV, respectively, to reach a current density of 10 mA cm?2. An electrolyzer based on CoSx@Cu2MoS4‐MoS2/NSG produces low cell voltage of 1.60 V and long‐term stability, surpassing a device of Pt/C + RuO2/C. In addition, a Zn‐air battery using cathodic CoSx@Cu2MoS4‐MoS2/NSG catalyst delivers a high cell voltage of ≈1.44 V and a power density of 40 mW cm?2 at 58 mA cm?2, better than the state‐of‐the‐art Pt/C catalyst. These achievements are due to the rational combination of highly active core@shell CoSx@Cu2MoS4 with large‐area and high‐porosity MoS2/NSG to produce unique physicochemical properties with multi‐integrated active centers and synergistic effects. The outperformances of such catalyst suggest an advanced candidate for multielectrocatalysis applications in metal‐air batteries and hydrogen production.  相似文献   
93.
For efficient catalysis and electrocatalysis well‐designed, high‐surface‐area support architectures covered with highly dispersed metal nanoparticles with good catalyst‐support interactions are required. In situ grown Ni nanoparticles on perovskites have been recently reported to enhance catalytic activities in high‐temperature systems such as solid oxide cells (SOCs). However, the micrometer‐scale primary particles prepared by conventional solid‐state reactions have limited surface area and tend to retain much of the active catalytic element within the bulk, limiting efficacy of such exsolution processes in low‐temperature systems. Here, a new, highly efficient, solvothermal route is demonstrated to exsolution from smaller scale primary particles. Furthermore, unlike previous reports of B‐site exsolution, it seems that the metal nanoparticles are exsolved from the A‐site of these perovskites. The catalysts show large active site areas and strong metal‐support interaction (SMSI), leading to ≈26% higher geometric activity (25 times higher mass activity with 1.4 V of Eon‐set) and stability for oxygen‐evolution reaction (OER) with only 0.72 µg base metal contents compared to typical 20 wt% Ni/C and even commercial 20 wt% Ir/C. The findings obtained here demonstrate the potential design and development of heterogeneous catalysts in various low‐temperature electrochemical systems including alkaline fuel cells and metal–air batteries.  相似文献   
94.
Despite their high theoretical energy density and low cost, lithium–sulfur batteries (LSBs) suffer from poor cycle life and low energy efficiency owing to the polysulfides shuttle and the electronic insulating nature of sulfur. Conductivity and polarity are two critical parameters for the search of optimal sulfur host materials. However, their role in immobilizing polysulfides and enhancing redox kinetics for long‐life LSBs are not fully understood. This work has conducted an evaluation on the role of polarity over conductivity by using a polar but nonconductive platelet ordered mesoporous silica (pOMS) and its replica platelet ordered mesoporous carbon (pOMC), which is conductive but nonpolar. It is found that the polar pOMS/S cathode with a sulfur mass fraction of 80 wt% demonstrates outstanding long‐term cycle stability for 2000 cycles even at a high current density of 2C. Furthermore, the pOMS/S cathode with a high sulfur loading of 6.5 mg cm?2 illustrates high areal and volumetric capacities with high capacity retention. Complementary physical and electrochemical probes clearly show that surface polarity and structure are more dominant factors for sulfur utilization efficiency and long‐life, while the conductivity can be compensated by the conductive agent involved as a required electrode material during electrode preparation. The present findings shed new light on the design principles of sulfur hosts towards long‐life and highly efficient LSBs.  相似文献   
95.
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.  相似文献   
96.
97.
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.  相似文献   
98.
Journal of Microbiology - Enterovirus A71 (EV71), the main etiological agent of handfoot- mouth disease (HFMD), circulates in many areas of the world and has caused large epidemics since 1997,...  相似文献   
99.
100.

Propagation of gametophytes and sporophytes using mechanical fragmentation has been considered a suitable method for mass production of ferns. This study aimed to develop a practical propagation method for Lemmaphyllum microphyllum C. Presl, which is a fern of significant ornamental and medicinal value. Gametophytes were obtained through in vitro spore germination and used for propagation experiments. The gametophyte was mechanically fragmented using a scalpel into small fragments, which were then used to investigate gametophyte proliferation. In addition, the gametophyte was fragmented using a blender and then used to study sporophyte formation. Optimal proliferation conditions of the gametophyte were determined using Murashige and Skoog (MS) basal medium (double-, full-, half-, quarter-strength), Knop medium, and medium components (sucrose, nitrogen sources, activated charcoal), at various concentrations. The fresh weight of the gametophyte was 14-fold higher than that of gametophytes (300 mg) used as culture material, when cultured on double-strength MS. Moreover, 1 g of the gametophyte fragmented in 25 mL of distilled water formed more than 430 sporophytes in a soil mixture in an area of 7.5 cm2. The sporophytes were successfully cultivated in the greenhouse after acclimation. A large-scale production method for L. microphyllum that can be easily implemented in a fern production farm is outlined.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号