首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50822篇
  免费   16858篇
  国内免费   15篇
  2023年   79篇
  2022年   318篇
  2021年   876篇
  2020年   2396篇
  2019年   3981篇
  2018年   4320篇
  2017年   4498篇
  2016年   4774篇
  2015年   5185篇
  2014年   5031篇
  2013年   5632篇
  2012年   3962篇
  2011年   3485篇
  2010年   4321篇
  2009年   2873篇
  2008年   2312篇
  2007年   1742篇
  2006年   1606篇
  2005年   1511篇
  2004年   1462篇
  2003年   1260篇
  2002年   1187篇
  2001年   964篇
  2000年   891篇
  1999年   599篇
  1998年   217篇
  1997年   167篇
  1996年   147篇
  1995年   115篇
  1994年   111篇
  1993年   87篇
  1992年   192篇
  1991年   153篇
  1990年   113篇
  1989年   126篇
  1988年   95篇
  1987年   83篇
  1986年   87篇
  1985年   69篇
  1984年   60篇
  1983年   50篇
  1982年   40篇
  1981年   39篇
  1979年   29篇
  1978年   37篇
  1977年   30篇
  1976年   38篇
  1975年   33篇
  1973年   39篇
  1969年   28篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
971.
972.
The axolotl, Ambystoma mexicanum, is used extensively for research in developmental biology, particularly for its ability to regenerate and restore lost organs, including in the nervous system, to full functionality. Regeneration in mammals typically depends on the healing process and scar formation with limited replacement of lost tissue. Other organisms, such as spiny mice (Acomys cahirinus), salamanders, and zebrafish, are able to regenerate some damaged body components. Blastema is a tissue that is formed after tissue injury in such organisms and is composed of progenitor cells or dedifferentiated cells that differentiate into various cell types during regeneration. Thus, identifying the molecules responsible for initiation of blastema formation is an important aspect for understanding regeneration. Introns, a major source of noncoding RNAs (ncRNAs), have characteristic sizes in the axolotl, particularly in genes associated with development. These ncRNAs, particularly microRNAs (miRNAs), exhibit dynamic regulation during regeneration. These miRNAs play an essential role in timing and control of gene expression to order and organize processes necessary for blastema creation. Master keys or molecules that underlie the remarkable regenerative abilities of the axolotl remain to be fully explored and exploited. Further and ongoing research on regeneration promises new knowledge that may allow improved repair and renewal of human tissues.  相似文献   
973.
Cyclostratigraphical analysis of the foraminiferal assemblages from the Early Toarcian at the Mochras Farm Borehole (Wales) was conducted in order to evaluate the incidence of cyclic palaeoenvironmental changes on the foraminiferal community. Different variables such as type of morphogroup, evolutionary strategy, habitat, particular taxa, diversity and abundance were studied using the Lomb–Scargle periodogram implemented in the computer program SLOMBS. A well‐developed cyclostratigraphical pattern is recognized, with the presence of several cycles (in metres) at 3.4–4/7.2–7.5/10.1–10.6/32.1–33.3/104.2–111.2/128.2/166.7, belonging to the high‐, middle‐, middle‐/low‐, and low‐frequency bands. The incidence and relevance of the cycles is found to be related to particular variables marking the global and local character of the involved processes. Cyclic changes in the organic matter input are found to be the most relevant palaeoenvironmental factor, oxygenation being secondary. A correspondence with specific Milankovitch cycles is, at present, difficult to determine.  相似文献   
974.
Our previous research on coprolite specimens from the mummies of Joseon Dynasty (1392–1910 CE) has revealed various species of parasite eggs. Herein, we added 2 new helminthic cases of human remains from Joseon-period graves in the Republic of Korea (Korea). The organic materials precipitated on the hip bones of 2 half-mummied cases (Goryeong and Gwangmyeong cases) were collected, rehydrated, and examined by a microscope. In the sample from Goryeong-gun (gun=County), ova of Trichuris trichiura, Clonorchis sinensis, and Metagonimus spp. were detected, and eggs of T. trichiura and A. lumbricoides were found from the sample of Gwangmyeong-si (si=City). By adding this outcome to the existing data pool, we confirm our previous estimates of Joseon-period parasite infection rates. The overall rates of A. lumbricoides, T. trichiura, and C. sinensis decreased dramatically from Joseon to the modern period. In Goryeong mummy specimen, we also found Metagonimus spp. eggs that has rarely been detected in archaeological samples so far.  相似文献   
975.
The biology of trees that grew in high‐latitude forests during warmer geological periods is of major interest in understanding past and future ecosystem dynamics. As we study the different plants that composed these forests, it becomes possible to make comparisons with ecosystem processes that occur today. Here we describe a silicified late Permian (Lopingian) glossopterid (seed fern) trunk from Skaar Ridge, central Transantarctic Mountains, Antarctica, with evidence of glossopterid rootlets growing into its wood. The specimen is interpreted as a nurse log similar to those seen in some extant forests. Together with evidence of glossopterid roots growing within the lacunae of older roots, this new specimen suggests the existence of facilitative interactions among the glossopterid trees that dominated the high‐latitude forests of Gondwana during the late Permian. More generally, the existence of self‐facilitation might have favoured the expansion of glossopterids within various environments, especially those at high palaeolatitudes, during the Permian icehouse to greenhouse transition.  相似文献   
976.
The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid‐deficient conditions is not completely understood. Here, we identify ADP‐ribosylation factor GTPase‐activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature‐sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.  相似文献   
977.
The diversity of axon guidance (AG) receptors reflects gains in complexity of the animal nervous system during evolution. Members of the Roundabout (Robo) family of receptors interact with Slit proteins and play important roles in many developmental processes, including AG and neural crest cell migration. There are four members of the Robo gene family. However, the evolutionary history of Robo family genes remain obscure. We analyzed the distribution of Robo family members in metazoan species ranging in complexity from hydras to humans. We undertook a phylogenetic analysis in metazoans, synteny analysis, and ancestral chromosome mapping in vertebrates, and detected selection pressure and functional divergence among four mammalian Robo paralogs. Based on our analysis, we proposed that the ancestral Robo gene could have undergone a tandem duplication in the vertebrate ancestor; then one round of whole genome duplication events occurred before the divergence of ancestral lamprey and gnathostome, generating four paralogs in early vertebrates. Robo4 paralog underwent segmental loss in the following evolutionary process. Our results showed that Robo3 paralog is under more powerful purifying selection pressure compared with other three paralogs, which could correlate with its unique expression pattern and function. Furthermore, we found four sites under positive selection pressure on the Ig1‐2 domains of Robo4 that might interfere with its binding to Slits ligand. Diverge analysis at the amino acid level showed that Robo4 paralog have relatively greater functional diversifications than other Robo paralogs. This coincides with the fact that Robo4 predominantly functions in vascular endothelial cells but not the nervous system.  相似文献   
978.
The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well-watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low-complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype-specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.  相似文献   
979.
980.
The development of clustered regularly interspaced palindromic repeats (CRISPR)-associated protein (Cas) variants with a broader recognition scope is critical for further improvement of CRISPR/Cas systems. The original Cas9 protein from Streptococcus canis (ScCas9) can recognize simple NNG-protospacer adjacent motif (PAM) targets, and therefore possesses a broader range relative to current CRISPR/Cas systems, but its editing efficiency is low in plants. Evolved ScCas9+ and ScCas9++ variants have been shown to possess higher editing efficiencies in human cells, but their activities in plants are currently unknown. Here, we utilized codon-optimized ScCas9, ScCas9+ and ScCas9++ and a nickase variant ScCas9n++ to systematically investigate genome cleavage activity and cytidine base editing efficiency in rice (Oryza sativa L.). This analysis revealed that ScCas9++ has higher editing efficiency than ScCas9 and ScCas9+ in rice. Furthermore, we fused the evolved cytidine deaminase PmCDA1 with ScCas9n++ to generate a new evoBE4max-type cytidine base editor, termed PevoCDA1-ScCas9n++. This base editor achieved stable and efficient multiplex-site base editing at NNG-PAM sites with wider editing windows (C1–C17) and without target sequence context preference. Multiplex-site base editing of the rice genes OsWx (three targets) and OsEui1 (two targets) achieved simultaneous editing and produced new rice germplasm. Taken together, these results demonstrate that ScCas9++ represents a crucial new tool for improving plant editing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号