首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   838篇
  免费   66篇
  2022年   7篇
  2021年   14篇
  2020年   10篇
  2019年   15篇
  2018年   17篇
  2017年   7篇
  2016年   17篇
  2015年   30篇
  2014年   28篇
  2013年   53篇
  2012年   66篇
  2011年   46篇
  2010年   28篇
  2009年   30篇
  2008年   45篇
  2007年   49篇
  2006年   29篇
  2005年   28篇
  2004年   34篇
  2003年   30篇
  2002年   33篇
  2001年   16篇
  2000年   17篇
  1999年   19篇
  1998年   10篇
  1997年   8篇
  1996年   8篇
  1992年   8篇
  1991年   10篇
  1990年   8篇
  1989年   16篇
  1988年   8篇
  1987年   6篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1983年   12篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   17篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1974年   6篇
  1973年   12篇
  1972年   5篇
  1971年   6篇
  1970年   5篇
排序方式: 共有904条查询结果,搜索用时 32 毫秒
71.
Protein kinase C (PKC) plays a critical role in signal transduction, mediating various cellular events critical for normal development, including that of the palate. In vivo and in vitro studies suggest the relevance of the inhibition of PKC by the mycotoxin, secalonic acid D (SAD), to its induction of cleft palate (CP) in mice. In the present study, temporal and spatial expression and the activity of various PKC isoenzymes were studied in the control and SAD-exposed murine embryonic palate during gestational days (GD) 12-14.5 by western blotting, immunohistochemistry, and phosphotransfer assay. The Ca2+-dependent isoenzymes, PKC alpha and PKC betaII, showed significant expression on GD 12.0, which gradually decreased through GD 14.5, whereas PKC betaI and PKC gamma were negligible throughout. All Ca2+-independent isoenzymes (epsilon, delta, and zeta) were expressed more abundantly and, in contrast to the Ca2+-dependent ones, progressively increased with age. SAD failed to alter this pattern of expression but enhanced the phosphorylation of PKC epsilon throughout development. Immunohistochemical analysis revealed an isoenzyme-specific distribution of PKC between the epithelium and mesenchyme. As expected, SAD significantly inhibited the total Ca2+-dependent PKC activity in palatal extracts. Although total Ca2+-independent PKC activity in palatal extracts was unaffected by SAD, individual pure isoenzymes were either selectively inhibited (PKC zeta), stimulated (PKC delta), or unaffected (PKC epsilon) by SAD. These results show that PKC isoenzymes exhibit dynamic temporal and spatial patterns of expression and activity in the developing palate and that the induction of CP by SAD is associated with an alteration in their activation and/or activity.  相似文献   
72.
The F-actin based motor protein myosin II has a key role in cytokinesis. Here we show that the Schizosaccharomyces pombe regulatory light chain (RLC) protein Rlc1p binds to Myo2p in manner that is dependent on the IQ sequence motif (the RLC-binding site), and that Rlc1p is a component of the actomyosin ring. Rlc1p is important for cytokinesis at all growth temperatures and is essential for this process at lower temperatures. Interestingly, all deleterious phenotypes associated with the loss of Rlc1p function are suppressed by deletion of the RLC binding site on Myo2p. We conclude that the sole essential function of RLCs in fission yeast is to relieve the auto-inhibition of myosin II function, which is mediated by the RLC-binding site, on the myosin heavy chain (MHC).  相似文献   
73.
We present the results of a comprehensive analysis of the proteome of Mycoplasma genitalium (MG), the smallest autonomously replicating organism that has been completely sequenced. Our aim was to identify and characterize all soluble proteins in MG that are structurally and functionally uncharacterized. We were particularly interested in identifying proteins that differed significantly from typical globular proteins, for example, proteins which are unstructured in the absence of a ‘partner’ molecule or those that exhibit unusual thermodynamic properties. This work is complementary to other structural genomics projects whose primary aim is to determine the three-dimensional structures of proteins with unknown folds. We have identified all the full-length open reading frames (ORFs) in MG that have no homologs of known structure and are of unknown function. Twenty-five of the total 483 ORFs fall into this category and we have expressed, purified and characterized 11 of them. We have used circular dichroism (CD) to rapidly investigate their biophysical properties. Our studies reveal that these proteins have a wide range of structures varying from highly helical to partially structured to unfolded or random coil. They also display a variety of thermodynamic properties ranging from cooperative unfolding to no detectable unfolding upon thermal denaturation. Several of these proteins are highly conserved from mycoplasma to man. Further information about target selection and CD results is available at http://bioinfo.mbb.yale.edu/genome  相似文献   
74.
beta(2)-Glycoprotein I (beta(2)GP1), a 50 kDa serum glycoprotein, binds anionic phospholipids and plays a role in phosphatidylserine (PS)-dependent coagulation and apoptotic processes. To characterize the molecular consequences that occur to target membranes upon binding of beta(2)GP1, the interaction between beta(2)GP1 and PS-containing vesicles was investigated by fluorescent spectroscopy. Membranes containing pyrene-labeled lipid showed that binding of beta(2)GP1 induced a decrease in excimer/monomor ratios (E/M) of the target membrane. Although these membrane alterations occurred in isotonic buffer, the effects were greater in low ionic strength buffer and were coincident to membrane precipitation. In contrast, increases in membrane polarization were only seen in low ionic strength buffer. Analysis of beta(2)GP1 binding kinetics by resonance energy transfer between fluorescein-labeled beta(2)GP1 and rhodamine-containing PS vesicles revealed a two-component process: (1) a primary and rapid binding via the C-terminus that occurred <2 s in both isotonic and low ionic strength buffers, and (2) a sequential binding of the N-terminus that was approximately 100-fold slower in low ionic strength solution. Taken together, these data suggest that beta(2)GP1 alters the fluidity and membrane polarization of its target membrane, which in low ionic strength buffer is of sufficient magnitude to induce precipitation.  相似文献   
75.
The mechanosensitive channel of large conductance (MscL) is a protein that responds to membrane tension by opening a transient pore during osmotic downshock. Due to its large pore size and functional reconstitution into lipid membranes, MscL has been proposed as a promising artificial nanovalve suitable for biotechnological applications. For example, site-specific mutations and tailored chemical modifications have shown how MscL channel gating can be triggered in the absence of tension by introducing charged residues at the hydrophobic pore level. Recently, engineered MscL proteins responsive to stimuli like pH or light have been reported. Inspired by experiments, we present a thorough computational study aiming at describing, with atomistic detail, the artificial gating mechanism and the molecular transport properties of a light-actuated bacterial MscL channel, in which a charge-induced gating mechanism has been enabled through the selective cleavage of photo-sensitive alkylating agents. Properties such as structural transitions, pore dimension, ion flux and selectivity have been carefully analyzed. Besides, the effects of charge on alternative sites of the channel with respect to those already reported have been addressed. Overall, our results provide useful molecular insights into the structural events accompanying the engineered MscL channel gating and the interplay of electrostatic effects, channel opening and permeation properties. In addition, we describe how the experimentally observed ionic current in a single-subunit charged MscL mutant is obtained through a hydrophobicity breaking mechanism involving an asymmetric inter-subunit motion.  相似文献   
76.
Reactive cardiac fibrosis resulting from chronic pressure overload (PO) compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs) play a key role in fibrosis by activating cardiac fibroblasts (CFb), and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC). Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM) proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak) and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i) extracellular accumulation of both collagen and fibronectin, (ii) both basal and PDGF-stimulated activation of Pyk2, (iii) nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv) PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation) in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.  相似文献   
77.
A high-sensitivity assay has been developed for the detection of human topoisomerase I with single molecule resolution. The method uses magnetic sepharose beads to concentrate rolling circle products, produced by the amplification of DNA molecules circularized by topoisomerase I and detectable with a confocal microscope as single and discrete dots, once reacted with fluorescent probes. Each dot, corresponding to a single cleavage–religation event mediated by the enzyme, can be counted due to its high signal/noise ratio, allowing detection of 0.3 pM enzyme and representing a valid method to detect the enzyme activity in highly diluted samples.  相似文献   
78.
Hemoglobin (Hb) is in equilibrium between low affinity Tense (T) and high affinity Relaxed (R) states associated with its unliganded and liganded forms, respectively. Mammalian species can be classified into two groups on the basis of whether they express ‘high’ and ‘low’ oxygen affinity Hbs. Although Hbs from former group have been studied extensively, a limited number of structural studies have been performed for the low oxygen affinity Hbs. Here, the crystal structure of low oxygen affinity sheep methemoglobin (metHb) has been determined to 2.7 Å resolution. Even though sheep metHb adopts classical R state like quaternary structure, it shows localized quaternary and tertiary structural differences compared with other liganded Hb. The critical group of residues in the “joint region”, shown as a major source of quaternary constraint on deoxyHb, formed unique interactions in the α1β2/α2β1 interfaces of sheep metHb structure. In addition, the constrained β subunits heme environment and the contraction of N-termini and A-helices of β subunits towards the molecular dyad are observed for sheep metHb structure. These observations provide the structural basis for a low oxygen affinity and blunt response to allosteric effector of sheep Hb.  相似文献   
79.
G-quadruplexes in promoters throughout the human genome   总被引:22,自引:11,他引:11  
  相似文献   
80.
Integrins are transmembrane heterodimeric proteins that link extracellular matrix (ECM) to cytoskeleton and have been shown to function as mechanotransducers in nonmuscle cells. Synthetic integrin-binding peptide triggers Ca(2+) mobilization and contraction in vascular smooth muscle cells (VSMCs) of rat afferent arteriole, indicating that interactions between the ECM and integrins modulate vascular tone. To examine whether integrins transduce extracellular mechanical stress into intracellular Ca(2+) signaling events in VSMCs, unidirectional mechanical force was applied to freshly isolated renal VSMCs through paramagnetic beads coated with fibronectin (natural ligand of alpha(5)beta(1)-integrin in VSMCs). Pulling of fibronectin-coated beads with an electromagnet triggered Ca(2+) sparks, followed by global Ca(2+) mobilization. Paramagnetic beads coated with low-density lipoprotein, whose receptors are not linked to cytoskeleton, were minimally effective in triggering Ca(2+) sparks and global Ca(2+) mobilization. Preincubation with ryanodine, cytochalasin-D, or colchicine substantially reduced the occurrence of Ca(2+) sparks triggered by fibronectin-coated beads. Binding of VSMCs with antibodies specific to the extracellular domains of alpha(5-) and beta(1)-integrins triggered Ca(2+) sparks simulating the effects of fibronectin-coated beads. Preincubation of microperfused afferent arterioles with ryanodine or integrin-specific binding peptide inhibited pressure-induced myogenic constriction. In conclusion, integrins transduce mechanical force into intracellular Ca(2+) signaling events in renal VSMCs. Integrin-mediated mechanotransduction is probably involved in myogenic response of afferent arterioles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号