首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   17篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   7篇
  2016年   15篇
  2015年   19篇
  2014年   21篇
  2013年   24篇
  2012年   31篇
  2011年   33篇
  2010年   21篇
  2009年   15篇
  2008年   27篇
  2007年   18篇
  2006年   9篇
  2005年   14篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   8篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1984年   2篇
  1981年   1篇
  1980年   2篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有335条查询结果,搜索用时 31 毫秒
41.
Leishmaniasis (1) is an endemic disease mainly caused by the protozoan Leishmania donovani (Ld). Polyamines have been identified as essential organic compounds for the growth and survival of Ld. These are synthesized in Ld by polyamine synthesis pathway comprising of many enzymes such as ornithine decarboxylase (ODC), spermidine synthase (SS), and S-adenosylmethionine decarboxylase. Inhibition of these enzymes in Ld offers a viable prospect to check its growth and development. In the present work, we used computational approaches to search natural inhibitors against ODC and SS enzymes. We predicted three-dimensional structures of ODC and SS using comparative modeling and molecular dynamics (MD) simulations. Thousands of natural compounds were virtually screened against target proteins using high throughput approach. MD simulations were then performed to examine molecular interactions between the screened compounds and functional residues of the active sites of the enzymes. Herein, we report two natural compounds of dual inhibitory nature active against the two crucial enzymes of polyamine pathway of Ld. These dual inhibitors have the potential to evolve as lead molecules in the development of antileishmanial drugs. (1)These authors contributed equally.  相似文献   
42.
43.

Background

Pentavalent antimonials have been the mainstay of antileishmanial therapy for decades, but increasing failure rates under antimonial treatment have challenged further use of these drugs in the Indian subcontinent. Experimental evidence has suggested that parasites which are resistant against antimonials have superior survival skills than sensitive ones even in the absence of antimonial treatment.

Methods and Findings

We use simulation studies based on a mathematical L. donovani transmission model to identify parameters which can explain why treatment failure rates under antimonial treatment increased up to 65% in Bihar between 1980 and 1997. Model analyses suggest that resistance to treatment alone cannot explain the observed treatment failure rates. We explore two hypotheses referring to an increased fitness of antimony-resistant parasites: the additional fitness is (i) disease-related, by causing more clinical cases (higher pathogenicity) or more severe disease (higher virulence), or (ii) is transmission-related, by increasing the transmissibility from sand flies to humans or vice versa.

Conclusions

Both hypotheses can potentially explain the Bihar observations. However, increased transmissibility as an explanation appears more plausible because it can occur in the background of asymptomatically transmitted infection whereas disease-related factors would most probably be observable. Irrespective of the cause of fitness, parasites with a higher fitness will finally replace sensitive parasites, even if antimonials are replaced by another drug.  相似文献   
44.

Background

There are no effective vaccines for visceral leishmaniasis (VL), a neglected parasitic disease second only to malaria in global mortality. We previously identified 14 protective candidates in a screen of 100 Leishmania antigens as DNA vaccines in mice. Here we employ whole blood assays to evaluate human cytokine responses to 11 of these antigens, in comparison to known defined and crude antigen preparations.

Methods

Whole blood assays were employed to measure IFN-γ, TNF-α and IL-10 responses to peptide pools of the novel antigens R71, Q51, L37, N52, L302.06, J89, M18, J41, M22, M63, M57, as well as to recombinant proteins of tryparedoxin peroxidase (TRYP), Leishmania homolog of the receptor for activated C kinase (LACK) and to crude soluble Leishmania antigen (SLA), in Indian patients with active (n = 8) or cured (n = 16) VL, and in modified Quantiferon positive (EHC+ve, n = 20) or modified Quantiferon negative (EHC−ve, n = 9) endemic healthy controls (EHC).

Results

Active VL, cured VL and EHC+ve groups showed elevated SLA-specific IFN-γ, but only active VL patients produced IL-10 and EHC+ve did not make TNF-α. IFN-γ to IL-10 and TNF-α to IL-10 ratios in response to TRYP and LACK antigens were higher in cured VL and EHC+ve exposed individuals compared to active VL. Five of the eleven novel candidates (R71, L37, N52, J41, and M22) elicited IFN-γ and TNF-α, but not IL-10, responses in cured VL (55–87.5% responders) and EHC+ve (40–65% responders) subjects.

Conclusions

Our results are consistent with an important balance between pro-inflammatory IFNγ and TNFγ cytokine responses and anti-inflammatory IL-10 in determining outcome of VL in India, as highlighted by response to both crude and defined protein antigens. Importantly, cured VL patients and endemic Quantiferon positive individuals recognise 5 novel vaccine candidate antigens, confirming our recent data for L. chagasi in Brazil, and their potential as cross-species vaccine candidates.  相似文献   
45.

Background

With widespread resistance to antimonials in Visceral Leishmaniasis (VL) in the Indian subcontinent, Miltefosine (MIL) has been introduced as the first line therapy. Surveillance of MIL susceptibility in natural populations of Leishmania donovani is vital to preserve it and support the VL elimination program.

Methodology and Principal Findings

We measured in vitro susceptibility towards MIL and paromomycin (PMM) in L. donovani isolated from VL and PKDL, pre- and post-treatment cases, using an amastigote-macrophage model. MIL susceptibility of post-treatment isolates from cured VL cases (n = 13, mean IC50±SD = 2.43±1.44 µM), was comparable (p>0.05) whereas that from relapses (n = 3, mean IC50 = 4.72±1.99 µM) was significantly higher (p = 0.04) to that of the pre-treatment group (n = 6, mean IC50 = 1.86±0.75 µM). In PKDL, post-treatment isolates (n = 3, mean IC50 = 16.13±2.64 µM) exhibited significantly lower susceptibility (p = 0.03) than pre-treatment isolates (n = 5, mean IC50 = 8.63±0.94 µM). Overall, PKDL isolates (n = 8, mean IC50 = 11.45±4.19 µM) exhibited significantly higher tolerance (p<0.0001) to MIL than VL isolates (n = 22, mean IC50 = 2.58±1.58 µM). Point mutations in the miltefosine transporter (LdMT) and its beta subunit (LdRos3) genes previously reported in parasites with experimentally induced MIL resistance were not present in the clinical isolates. Further, the mRNA expression profile of these genes was comparable in the pre- and post-treatment isolates. Parasite isolates from VL and PKDL cases were uniformly susceptible to PMM with respective mean IC50 = 7.05±2.24 µM and 6.18±1.51 µM.

Conclusion

The in vitro susceptibility of VL isolates remained unchanged at the end of MIL treatment; however, isolates from relapsed VL and PKDL cases had lower susceptibility than the pre-treatment isolates. PKDL isolates were more tolerant towards MIL in comparison with VL isolates. All parasite isolates were uniformly susceptible to PMM. Mutations in the LdMT and LdRos3 genes as well as changes in the expression of these genes previously correlated with experimental resistance to MIL could not be verified for the field isolates.  相似文献   
46.
Advances in selectable marker genes for plant transformation   总被引:1,自引:0,他引:1  
Plant transformation systems for creating transgenics require separate process for introducing cloned DNA into living plant cells. Identification or selection of those cells that have integrated DNA into appropriate plant genome is a vital step to regenerate fully developed plants from the transformed cells. Selectable marker genes are pivotal for the development of plant transformation technologies because marker genes allow researchers to identify or isolate the cells that are expressing the cloned DNA, to monitor and select the transformed progeny. As only a very small portion of cells are transformed in most experiments, the chances of recovering transgenic lines without selection are usually low. Since the selectable marker gene is expected to function in a range of cell types it is usually constructed as a chimeric gene using regulatory sequences that ensure constitutive expression throughout the plant. Advent of recombinant DNA technology and progress in plant molecular biology had led to a desire to introduce several genes into single transgenic plant line, necessitating the development of various types of selectable markers. This review article describes the developments made in the recent past on plant transformation systems using different selection methods adding a note on their importance as marker genes in transgenic crop plants.  相似文献   
47.
Mulberry Leaf Metabolism under High Temperature Stress   总被引:5,自引:0,他引:5  
Effects of high temperature on the activity of photosynthetic enzymes and leaf proteins were studied in mulberry (Morus alba L. cv. BC2-59). A series of experiments were conducted at regular intervals (120, 240 and 360 min) to characterize changes in activities of ribulose-1,5-bisphosphate carboxylase (RuBPC) and sucrose phosphate synthase (SPS), photosystem 2 (PS 2) activity, chlorophyll (Chl), carotenoid (Car), starch, sucrose (Suc), amino acid, free proline, protein and nucleic acid contents in leaves under high temperature (40 °C) treatments. High temperature markedly reduced the activities of RuBPC and SPS in leaf extracts. Chl content and PS 2 activity in isolated chloroplasts were also affected by high temperature, particularly over 360 min treatment. Increased leaf temperature affected sugar metabolism through reductions in leaf starch content and sucrose-starch balance. While total soluble protein content decreased under heat, total amino acid content increased. Proline accumulation (1.5-fold) was noticed in high temperature-stressed leaves. A reduction in the contents of foliar nitrogen and nucleic acids (DNA and RNA) was also noticed. SDS-PAGE protein profile showed few additional proteins (68 and 85 kDa) in mulberry plants under heat stress compared to control plants. Our results clearly suggest that mulberry plants are very sensitive to high temperature with particular reference to the photosynthetic carbon metabolism.  相似文献   
48.
Three-year-old plants of Parthenium argentatum Gray cv. 11591 grown under natural photoperiod were exposed for 60 d to low night temperature (LNT) of 15 °C (daily from 18:00 to 06:00). Effects of the treatment on net photosynthetic rates (P N), rubber accumulation, and associated biochemical traits were examined. LNT initially reduced P N with a parallel decline in the activities of ribulose-1,5-bisphosphate carboxylase, fructose bisphosphatase, and sucrose phosphate synthase for 20–30 d. Later, LNT enhanced P N and the activities of photosynthetic enzymes. Associated with high P N in LNT-treated guayule plants was a two-fold increase in rubber content and rubber transferase activity per unit of protein. The initial decrease in P N in LNT-treated guayule was associated with low content of chlorophyll (a+b), large starch accumulation, and higher ratio of glucose-6-phosphate/fructose-6-phosphate. Photosystem 2 activity in isolated chloroplasts was initially decreased, but increased after 30 d. There was a significant increase in the leaf soluble protein content in LNT-treated plants. Hence the photosynthetic performance of plants grown at 15 °C night temperature for 50 d was superior to those grown under natural photoperiod in all parameters studied. The high photosynthetic capacity may contribute to superior rubber yields under LNT. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
49.
Present study was aimed to select a suitable Trichoderma isolate as candidate antagonist based on its efficacy in producing cell wall degrading enzymes (CWDEs), its mycoparasitism activity and expression of related genes against the red rot pathogen caused by Colletotrichum falcatum in sugarcane. For which, six different isolates of Trichoderma selected from our earlier studies (T. harzianum, T. asperullum) were evaluated based on their capability in releasing cell wall degrading enzymes individually and during antagonism with C. falcatum in dual plate. Amongst T. harzianum (T20) exhibited the greatest mycoparasitic potential against the C. falcatum, by producing higher concentration of  CWDEs viz., chitinase and β-1, 3-glucanase, slightly lower amounts of cellulase and protease with significant reduction in polygalacturonase produced by pathogen. Further microscopic observation on interaction of C. falcatum with the selected isolate of T. harzianum (T20) exhibited the mycoparasitic activity of antagonist over pathogen in dual culture and inhibition of C. falcatum pathogenesis in detached sugarcane leaves. In addition, expression pattern of eight genes coding various enzymes involved in mycoparasitism by T. harzianum over C. falcatum were analyzed using qRT-PCR in vitro and on sugarcane leaves. In in vitro interactions, five genes of  cell wall degrading enzymes viz., chitinase (chit33), endochitinase (endo42), β-1, 3-glucanase (glu), exochitinase 1 (exc1), exochitinase 2 (exc2), were upregulated during and after contact as compared to before contact, while three genes related with proteases such as alkaline proteinase (prb1), trypsin-like protease (Pra1), subtilin-like serine protease (ssp), genes were upregulated during the contact with C. falcatum and slightly down regulated after contact. In detached leaves, seven genes were potentially upregulated except subtilin-like serine protease, which was down regulated during interaction of C. falcatum and T. harzianum as compared to T. harzianum inoculation alone. All these biochemical and molecular results confirm the efficacy of T. harzianum (T20) against C. falcatum and justify the right selection of candidate antagonist for our further studies on identification of antifungal genes/proteins against C. falcatum in sugarcane.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号