全文获取类型
收费全文 | 1691篇 |
免费 | 78篇 |
专业分类
1769篇 |
出版年
2023年 | 18篇 |
2022年 | 23篇 |
2021年 | 33篇 |
2020年 | 22篇 |
2019年 | 27篇 |
2018年 | 44篇 |
2017年 | 38篇 |
2016年 | 42篇 |
2015年 | 75篇 |
2014年 | 91篇 |
2013年 | 105篇 |
2012年 | 143篇 |
2011年 | 111篇 |
2010年 | 79篇 |
2009年 | 77篇 |
2008年 | 111篇 |
2007年 | 73篇 |
2006年 | 73篇 |
2005年 | 78篇 |
2004年 | 57篇 |
2003年 | 56篇 |
2002年 | 49篇 |
2001年 | 36篇 |
2000年 | 32篇 |
1999年 | 22篇 |
1998年 | 11篇 |
1997年 | 6篇 |
1996年 | 5篇 |
1995年 | 12篇 |
1994年 | 5篇 |
1993年 | 12篇 |
1992年 | 11篇 |
1991年 | 16篇 |
1990年 | 19篇 |
1989年 | 23篇 |
1988年 | 11篇 |
1987年 | 14篇 |
1986年 | 21篇 |
1985年 | 8篇 |
1984年 | 8篇 |
1983年 | 10篇 |
1982年 | 6篇 |
1981年 | 11篇 |
1980年 | 6篇 |
1977年 | 6篇 |
1975年 | 4篇 |
1974年 | 4篇 |
1973年 | 5篇 |
1972年 | 3篇 |
1969年 | 3篇 |
排序方式: 共有1769条查询结果,搜索用时 15 毫秒
41.
Fine Mapping QTL for Drought Resistance Traits in Rice (<Emphasis Type="Italic">Oryza sativa</Emphasis> L.) Using Bulk Segregant Analysis 总被引:1,自引:0,他引:1
Salunkhe AS Poornima R Prince KS Kanagaraj P Sheeba JA Amudha K Suji KK Senthil A Babu RC 《Molecular biotechnology》2011,49(1):90-95
Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand
drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance
traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection
(MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive,
time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect
QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked
to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done
by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped,
RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region
on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study
showed that the region, RM212–RM302–RM8085–RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits
across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through
MAS and map-based cloning. 相似文献
42.
The association of Arbuscular Mycorrhizal Fungi (AMF) with three medicinally important plants viz., Eclipta prostrata, Indigofera aspalathoides, I. tinctoria collected from three different localities of Kanyakumari District, South India was examined. The study reports the colonization
percentage, diversity and species richness of different AM fungi in the rhizosphere of the three medicinal plants and discusses
the impact of soil physicochemical characteristics such as soil texture, pH and available macro- and micro nutrient content
on AM fungal communities. A total 21 AM fungal species were identified in field conditions of the three plants from three
sites. AM fungal species richness, colorization percentage and Shannon index were found to be high in the two Indigofera sp. growing in the hilly areas of Kanyakumari District and were low in E. prostrata collected from the damp regions in the foothills of the three study sites. Five species registered 100% frequency in all
the study sites of the three medicinally important plants with Glomus as the dominant genera. The study states that the mean colonization and diversity patterns were dependant on edaphic factors
and type of vegetation. 相似文献
43.
González-Camacho JM de Los Campos G Pérez P Gianola D Cairns JE Mahuku G Babu R Crossa J 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2012,125(4):759-771
The availability of high density panels of molecular markers has prompted the adoption of genomic selection (GS) methods in animal and plant breeding. In GS, parametric, semi-parametric and non-parametric regressions models are used for predicting quantitative traits. This article shows how to use neural networks with radial basis functions (RBFs) for prediction with dense molecular markers. We illustrate the use of the linear Bayesian LASSO regression model and of two non-linear regression models, reproducing kernel Hilbert spaces (RKHS) regression and radial basis function neural networks (RBFNN) on simulated data and real maize lines genotyped with 55,000 markers and evaluated for several trait-environment combinations. The empirical results of this study indicated that the three models showed similar overall prediction accuracy, with a slight and consistent superiority of RKHS and RBFNN over the additive Bayesian LASSO model. Results from the simulated data indicate that RKHS and RBFNN models captured epistatic effects; however, adding non-signal (redundant) predictors (interaction between markers) can adversely affect the predictive accuracy of the non-linear regression models. 相似文献
44.
The assembly of AMPA-type glutamate receptors (AMPARs) into distinct ion channel tetramers ultimately governs the nature of information transfer at excitatory synapses. How cells regulate the formation of diverse homo- and heteromeric AMPARs is unknown. Using a sensitive biophysical approach, we show that the extracellular, membrane-distal AMPAR N-terminal domains (NTDs) orchestrate selective routes of heteromeric assembly via a surprisingly wide spectrum of subunit-specific association affinities. Heteromerization is dominant, occurs at the level of the dimer, and results in a preferential incorporation of the functionally critical GluA2 subunit. Using a combination of structure-guided mutagenesis and electrophysiology, we further map evolutionarily variable hotspots in the NTD dimer interface, which modulate heteromerization capacity. This 'flexibility' of the NTD not only explains why heteromers predominate but also how GluA2-lacking, Ca(2+)-permeable homomers could form, which are induced under specific physiological and pathological conditions. Our findings reveal that distinct NTD properties set the stage for the biogenesis of functionally diverse pools of homo- and heteromeric AMPAR tetramers. 相似文献
45.
Ashish Deep Gupta Vipin Kumar Bansal Vikash Babu Nishi Maithil 《Journal of Genetic Engineering and Biotechnology》2013,11(1):25-31
Antioxidant and antimicrobial activities of nutmeg (Myristica fragrans Houtt) seed extracts were evaluated. Seeds were extracted with acetone, ethanol, methanol, butanol and water. All the extracts have shown significant antioxidant and antimicrobial activities against the tested microorganisms. Among all extracts, acetone extract has shown the highest antioxidant activity. The acetone extract showed 93.12 ± 1.48 mg gallic acid equivalents (GAE)/100 g dry weight total phenolic content, DPPH scavenging activity of 63.04 ± 1.56%, chelating activity of 64.11 ± 2.21% and 74.36 ± 1.94% inhibition of β-carotene bleaching, at 1 mg/mL extract concentration. Out of all extracts, acetone extract was able to exert antimicrobial activity against all tested bacteria and fungi. Acetone extract has shown the strongest antibacterial and antifungal activity with Staphylococcus aureus (13.8 ± 0.42 mm) and Aspergillus niger (14.4 ± 0.37 mm), respectively. GC–MS analysis of acetone extract has revealed the presence of 32 compounds of extract representing 99.49%. Sabinene (28.61%) has shown the highest occurrence in the extract. β-Pinene (10.26), α-pinene (9.72), myristicin (4.30%), isoeugenol (2.72%), p-cymene (1.81%), carvacrol (1.54%), eugenol (0.89%) and β-caryophellene (0.82%) were reported as possible contributor for antioxidant and antimicrobial activity of nutmeg. 相似文献
46.
Pervez Haider Zaidi Zerka Rashid Madhumal Thayil Vinayan Gustavo Dias Almeida Ramesh Kumar Phagna Raman Babu 《PloS one》2015,10(4)
Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate rapid introgression of waterlogging tolerance in tropical maize breeding programs. 相似文献
47.
Wen-Jie Mu Wen-Jing Zhong Ji-Yi Yao Lu-Jing Li Yu-lan Peng Yi Wang Li-sha Liu Ying Xiao Shou-jun Liu Chang-jun Wu Yu-xin Jiang Shyam Sundar Parajuly Ping Xu Yi Hao Jing Li Bao-Ming Luo Hui Zhi 《PloS one》2016,11(2)
Background
This study aimed to confirm whether strain ratio should be added after evaluation of lesions with 5-point elasticity scoring for differentiating benign and malignant breast lesions on ultrasonographic elastography(UE).Materials and Methods
From June 2010 to March 2012, 1080 consecutive female patients with breast lesions were recruited into a multicenter retrospective study, which involved 8 centers across China. Each institutional ethic review board approved the study, and all the patients gave written informed consent. All the patients underwent the UE procedure and the strain ratios were calculated and the final diagnosis was made by histological findings. The sensitivity, specificity, accuracy, PPV and NPV were calculated for each of the two evaluation systems and the areas under the ROC curve were compared.Results
The strain ratios of benign lesions (mean, 2.6±2.0) and malignant lesions (mean,7.9±5.8) were significantly different (p <0.01). When the cutoff point was 3.01, strain ratio method had 79.8% sensitivity, 82.8% specificity, and 81.3% accuracy, while the 5-point scoring method had 93.1% sensitivity, 73.0% specificity, and 76.8% accuracy. The areas under the ROC curve with the strain ratio method and 5-point scoring method were 0.863 and 0.865, respectively(p>0.05). The strain ratio method shows better a diagnosis performance of the lesions with elasticity score 3 and 4.Conclusions
Although the two UE methods have similar diagnostic performance, separate calculation of the strain ratios seems compulsory, especially for the large solid breast lesions and the lesions with elasticity score 3 and 4. 相似文献48.
Advances in selectable marker genes for plant transformation 总被引:1,自引:0,他引:1
Plant transformation systems for creating transgenics require separate process for introducing cloned DNA into living plant cells. Identification or selection of those cells that have integrated DNA into appropriate plant genome is a vital step to regenerate fully developed plants from the transformed cells. Selectable marker genes are pivotal for the development of plant transformation technologies because marker genes allow researchers to identify or isolate the cells that are expressing the cloned DNA, to monitor and select the transformed progeny. As only a very small portion of cells are transformed in most experiments, the chances of recovering transgenic lines without selection are usually low. Since the selectable marker gene is expected to function in a range of cell types it is usually constructed as a chimeric gene using regulatory sequences that ensure constitutive expression throughout the plant. Advent of recombinant DNA technology and progress in plant molecular biology had led to a desire to introduce several genes into single transgenic plant line, necessitating the development of various types of selectable markers. This review article describes the developments made in the recent past on plant transformation systems using different selection methods adding a note on their importance as marker genes in transgenic crop plants. 相似文献
49.
Two sugar biosynthetic cassette plasmids were used to direct the biosynthesis of a deoxyaminosugar. The pOTBP1 plasmid containing TDP-glucose synthase (desIII), TDP-glucose-4,6-dehydratase (desIV), and glycosyltransferase (desVII/desVIII) was constructed and transformed into S. venezuelae YJ003, a strain in which the entire gene cluster of desosamine biosynthesis is deleted. The expression plasmid pOTBP3 containing 4-aminotransferase (gerB) and 3,5-epimerase (orf9) was transformed again into S. venezuelae YJ003- OTBP1 to obtain S. venezuelae YJ003-OTBP3 for the production of 4-amino-4,6-dideoxy-L-glucose derivatives. The crude extracts obtained from S. venezuelae ATCC 15439, S. venezuelae YJ003, and S. venezuelae YJ003-OTBP3 were further analyzed by TLC, bioassay, HPLC, ESI/MS, LC/MS, and MS/MS. The results of our study clearly shows that S. venezuelae YJ003-OTBP3 constructs other new hybrid macrolide derivatives including 4-amino-4,6-dideoxy-L-glycosylated YC-17 (3, [M+ Na+] m/z=464.5), methymycin (4, m/z=480.5), novamethymycin (6, m/z=496.5), and pikromycin (5, m/z=536.5) from a 12- membered ring aglycon (10-deoxymethynolide, 1) and 14-membered ring aglycon (narbonolide, 2). These results suggest a successful engineering of a deoxysugar pathway to generate novel hybrid macrolide derivatives, including deoxyaminosugar. 相似文献
50.
Babu R Prasad Gillian Mullins Natalia Nikolskaya David Connolly Terry J Smith Valérie A Gérard Stephen J Byrne Gemma-Louise Davies Yurii K Gun'ko Yury Rochev 《Journal of nanobiotechnology》2012,10(1):4