首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1896篇
  免费   123篇
  国内免费   1篇
  2020篇
  2021年   13篇
  2019年   10篇
  2018年   24篇
  2017年   11篇
  2016年   27篇
  2015年   29篇
  2014年   50篇
  2013年   110篇
  2012年   87篇
  2011年   91篇
  2010年   55篇
  2009年   47篇
  2008年   83篇
  2007年   86篇
  2006年   103篇
  2005年   75篇
  2004年   103篇
  2003年   74篇
  2002年   76篇
  2001年   76篇
  2000年   60篇
  1999年   69篇
  1998年   16篇
  1997年   21篇
  1996年   14篇
  1995年   22篇
  1994年   17篇
  1993年   13篇
  1992年   45篇
  1991年   36篇
  1990年   38篇
  1989年   30篇
  1988年   56篇
  1987年   41篇
  1986年   20篇
  1985年   25篇
  1984年   24篇
  1983年   23篇
  1982年   12篇
  1979年   16篇
  1978年   19篇
  1977年   10篇
  1976年   14篇
  1975年   13篇
  1974年   17篇
  1973年   17篇
  1972年   10篇
  1970年   9篇
  1969年   17篇
  1968年   10篇
排序方式: 共有2020条查询结果,搜索用时 0 毫秒
71.
Summary 1. Mutations in the S4 segment of domain III in the voltage gated skeletal muscle sodium channel hNaV1.4 were constructed to test the roles of each charged residue in deactivation gating. Mutations comprised charge reversals at K1-R6, charge neutralization, and substitution at R4 and R5. 2. Charge-reversing mutations at R4 and R5 produced the greatest alteration of activation parameters compared to hNaV1.4. Effects included depolarization of the conductance/voltage (g/V) curve, decreased valence and slowing of kinetics. 3. Reversal of charge at R2 to R4 hyperpolarized, and reversal at R5 or R6 depolarized the h curve. Most DIIIS4 mutations slowed inactivation from the open state. R4E slowed closed state fast inactivation and R5E inhibited its completion. 4. Deactivation from the open and/or inactivated state was prolonged in mutations reversing charge at R2 to R4 but accelerated by reversal of charge at R5 or R6. Effects were most pronounced at central charges R4 and R5. 5. Charge and structure each contribute to effects of mutations at R4 and R5 on channel gating. Effects of mutations on activation and deactivation at R4 and, to a lesser extent R5, were primarily owing to charge alteration, whereas effects on fast inactivation were charge independent.  相似文献   
72.
Ocular pigment epithelium (PE) cells promote the generation of T regulators (PE-induced Treg cells). Moreover, T cells exposed to PE acquire the capacity to suppress the activation of bystander T cells via TGFbeta. Membrane-bound TGFbeta on iris PE cells interacts with TGFbeta receptors on T cells, leading to the conversion of T cells to CD8(+) Treg cells via a cell contact-dependent mechanism. Conversely, soluble forms of TGFbeta produced by retinal PE cells can convert CD4(+) T cells into Treg cells in a manner that is independent of cell contact. In this study, we looked at the expression of immunoregulatory factors (TGFbeta, thrombospondins, CD59, IL-1 receptor antagonist, etc.) in PE cells as identified via an oligonucleotide microarray. Several thrombospondin-binding molecules were detected, and thus we focused subsequent analyses on thrombospondins. Via the conversion of latent TGFbeta to an active form that appears to be mediated by thrombospondin 1 (TSP-1), cultured iris PE and retinal PE cells induce a PE-induced Treg cell fate. After conversion, both ocular PE and PE-induced Treg cells express TSP-1. Regulatory T cell generation was amplified when the T cells also expressed TSP-1. In addition, PE-induced Treg cells significantly suppressed activation of bystander T cells via TSP-1. These results strongly suggest that the ability of ocular PE and PE-induced Treg cells to suppress bystander T cells depends on their capacity to produce TSP-1. Thus, intraocular TSP-1 produced by both ocular parenchymal cells and regulatory T cells is essential for immune regulation in the eye.  相似文献   
73.
Sixteen 2′→5′ dinucleotides; (2′–5′)pA-A, pA-G, pA-C, pA-U, pG-A, pG-G, pG-C, pG-U, pC-A, pC-G, pC-C, pC-U, pU-A, pU-G, pU-C, and pU-U were detected in nuclease P1 digest of a technical grade yeast RNA by means of gel filtration on Sephadex G-10, DEAE-Sephadex A-25 column chromatography in the presence of 7 m urea, paper electrophoresis and paper chromatography. Content of each dinucleotide was about 0.1 to 0.6% of the digest. As the sixteen 2′→5′ dinucleotides were found in all of the digests of technical grade RNA preparations tested, each polynucleotide chain in the preparations may be concluded to contain several per cent of the 2′–5′ minor phosphodiester linkages in addition to the 3′–5′ major phosphodiester linkages.  相似文献   
74.
Streptomyces sp. No. B-1625, which was identified as a strain of Streptomyces antibioticus, is a typical producer of actinomycin, but also produces minor acidic antibiotic components (FA), besides actinomycins X2, D and X. The FA-components, which were obtained with a high-producing mutant, 11M-21, showed antibacterial and antitumor activities, and also similar visible and UV absorption spectra to those characteristic of actinomycin. The FA-components were separated into five components, FA1 FA, FA, FA and FA, on TLC. Among them, one component, FA, isolated in a purified state as an orange powder, has a composition of C, 52.97: H, 6.34: N, 10.48%, and is active against B. subtilis at a MIC of 5mcg/ml. The FA component showed pKa′ of 5.4 and 12.0 and λmax at 443, 427 and 233 nm. From these properties, FA is considered to be an acidic actinomycin congener.  相似文献   
75.
Juvenile hormones (JHs) control a diversity of crucial life events in insects. In Lepidoptera which major agricultural pests belong to, JH signaling is critically controlled by a species-specific high-affinity, low molecular weight JH-binding protein (JHBP) in hemolymph, which transports JH from the site of its synthesis to target tissues. Hence, JHBP is expected to be an excellent target for the development of novel specific insect growth regulators (IGRs) and insecticides. A better understanding of the structural biology of JHBP should pave the way for the structure-based drug design of such compounds. Here, we report the crystal structure of the silkworm Bombyx mori JHBP in complex with two molecules of 2-methyl-2,4-pentanediol (MPD), one molecule (MPD1) bound in the JH-binding pocket while the other (MPD2) in a second cavity. Detailed comparison with the apo-JHBP and JHBP-JH II complex structures previously reported by us led to a number of intriguing findings. First, the JH-binding pocket changes its size in a ligand-dependent manner due to flexibility of the gate α1 helix. Second, MPD1 mimics interactions of the epoxide moiety of JH previously observed in the JHBP-JH complex, and MPD can compete with JH in binding to the JH-binding pocket. We also confirmed that methoprene, which has an MPD-like structure, inhibits the complex formation between JHBP and JH while the unepoxydated JH III (methyl farnesoate) does not. These findings may open the door to the development of novel IGRs targeted against JHBP. Third, binding of MPD to the second cavity of JHBP induces significant conformational changes accompanied with a cavity expansion. This finding, together with MPD2-JHBP interaction mechanism identified in the JHBP-MPD complex, should provide important guidance in the search for the natural ligand of the second cavity.  相似文献   
76.

Objective

To identify similarities and differences in the clinical features of adult Japanese patients with individual anti-aminoacyl-tRNA synthetase antibodies (anti-ARS Abs).

Methods

This was a retrospective analysis of 166 adult Japanese patients with anti-ARS Abs detected by immunoprecipitation assays. These patients had visited Kanazawa University Hospital or collaborating medical centers from 2003 to 2009.

Results

Anti-ARS Ab specificity included anti-Jo-1 (36%), anti-EJ (23%), anti-PL-7 (18%), anti-PL-12 (11%), anti-KS (8%), and anti-OJ (5%). These anti-ARS Abs were mutually exclusive, except for one serum Ab that had both anti-PL-7 and PL-12 reactivity. Myositis was closely associated with anti-Jo-1, anti-EJ, and anti-PL-7, while interstitial lung disease (ILD) was correlated with all 6 anti-ARS Abs. Dermatomyositis (DM)-specific skin manifestations (heliotrope rash and Gottron’s sign) were frequently observed in patients with anti-Jo-1, anti-EJ, anti-PL-7, and anti-PL-12. Therefore, most clinical diagnoses were polymyositis or DM for anti-Jo-1, anti-EJ, and anti-PL-7; clinically amyopathic DM or ILD for anti-PL-12; and ILD for anti-KS and anti-OJ. Patients with anti-Jo-1, anti-EJ, and anti-PL-7 developed myositis later if they had ILD alone at the time of disease onset, and most patients with anti-ARS Abs eventually developed ILD if they did not have ILD at disease onset.

Conclusion

Patients with anti-ARS Abs are relatively homogeneous. However, the distribution and timing of myositis, ILD, and rashes differ among patients with individual anti-ARS Abs. Thus, identification of individual anti-ARS Abs is beneficial to define this rather homogeneous subset and to predict clinical outcomes within the “anti-synthetase syndrome.”  相似文献   
77.
A number of specific, distinct neoplastic entities occur in the pediatric kidney, including Wilms’ tumor, clear cell sarcoma of the kidney (CCSK), congenital mesoblastic nephroma (CMN), rhabdoid tumor of the kidney (RTK), and the Ewing’s sarcoma family of tumors (ESFT). By employing DNA methylation profiling using Illumina Infinium HumanMethylation27, we analyzed the epigenetic characteristics of the sarcomas including CCSK, RTK, and ESFT in comparison with those of the non-neoplastic kidney (NK), and these tumors exhibited distinct DNA methylation profiles in a tumor-type-specific manner. CCSK is the most frequently hypermethylated, but least frequently hypomethylated, at CpG sites among these sarcomas, and exhibited 490 hypermethylated and 46 hypomethylated CpG sites in compared with NK. We further validated the results by MassARRAY, and revealed that a combination of four genes was sufficient for the DNA methylation profile-based differentiation of these tumors by clustering analysis. Furthermore, THBS1 CpG sites were found to be specifically hypermethylated in CCSK and, thus, the DNA methylation status of these THBS1 sites alone was sufficient for the distinction of CCSK from other pediatric renal tumors, including Wilms’ tumor and CMN. Moreover, combined bisulfite restriction analysis could be applied for the detection of hypermethylation of a THBS1 CpG site. Besides the biological significance in the pathogenesis, the DNA methylation profile should be useful for the differential diagnosis of pediatric renal tumors.  相似文献   
78.
79.
SMG-9 is a component of the NMD complex, a heterotetramer that also includes SMG-1 and SMG-8 in the complex. SMG-9 was also originally identified as a tyrosine-phosphorylated protein but the role of the phosphorylation is not yet known. In this study, we determined that IQGAP protein, an actin cytoskeleton modifier acts as a binding partner with SMG-9 and this binding is regulated by phosphorylation of SMG-9 at Tyr-41. SMG-9 is co-localized with IQGAP1 as a part of the process of actin enrichment in non-stimulated cells, but not in the EGF-stimulated cells. Furthermore, an increase in the ability of SMG-9 to bind to SMG-8 occurs in response to EGF stimulation. These results suggest that tyrosine phosphorylation of SMG-9 may play a role in the formation of the NMD complex in the cells stimulated by the growth factor.  相似文献   
80.
In pancreatic β-cells, glucose-induced mitochondrial ATP production plays an important role in insulin secretion. The mitochondrial phosphate carrier PiC is a member of the SLC25 (solute carrier family 25) family and transports Pi from the cytosol into the mitochondrial matrix. Since intramitochondrial Pi is an essential substrate for mitochondrial ATP production by complex V (ATP synthase) and affects the activity of the respiratory chain, Pi transport via PiC may be a rate-limiting step for ATP production. We evaluated the role of PiC in metabolism-secretion coupling in pancreatic β-cells using INS-1 cells manipulated to reduce PiC expression by siRNA (small interfering RNA). Consequent reduction of the PiC protein level decreased glucose (10 mM)-stimulated insulin secretion, the ATP:ADP ratio in the presence of 10 mM glucose and elevation of intracellular calcium concentration in response to 10 mM glucose without affecting the mitochondrial membrane potential (Δψm) in INS-1 cells. In experiments using the mitochondrial fraction of INS-1 cells in the presence of 1 mM succinate, PiC down-regulation decreased ATP production at various Pi concentrations ranging from 0.001 to 10 mM, but did not affect Δψm at 3 mM Pi. In conclusion, the Pi supply to mitochondria via PiC plays a critical role in ATP production and metabolism-secretion coupling in INS-1 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号