首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2620篇
  免费   135篇
  国内免费   3篇
  2758篇
  2023年   21篇
  2022年   38篇
  2021年   76篇
  2020年   50篇
  2019年   53篇
  2018年   69篇
  2017年   69篇
  2016年   84篇
  2015年   137篇
  2014年   110篇
  2013年   199篇
  2012年   191篇
  2011年   190篇
  2010年   131篇
  2009年   96篇
  2008年   123篇
  2007年   129篇
  2006年   120篇
  2005年   105篇
  2004年   78篇
  2003年   76篇
  2002年   71篇
  2001年   37篇
  2000年   27篇
  1999年   29篇
  1998年   14篇
  1997年   18篇
  1995年   15篇
  1992年   14篇
  1991年   18篇
  1990年   19篇
  1989年   16篇
  1988年   16篇
  1987年   14篇
  1986年   12篇
  1985年   16篇
  1984年   21篇
  1983年   16篇
  1982年   19篇
  1981年   12篇
  1979年   14篇
  1977年   13篇
  1976年   13篇
  1975年   14篇
  1974年   12篇
  1972年   14篇
  1971年   11篇
  1968年   11篇
  1967年   11篇
  1966年   10篇
排序方式: 共有2758条查询结果,搜索用时 15 毫秒
41.
The epigenetic mechanism of folic acid (FA) action on dorsal root ganglion (DRG) cell proliferation and sensory neuron differentiation is not well understood. In this study, the ND7 cell line, derived from DRG cells, was used to elucidate this mechanism. In ND7 cells differentiated with dbcAMP and NGF, Hes1 and Pax3 levels decreased, whereas Neurog2 levels showed a modest increase. Chromatin immunoprecipitation (ChIP) assays examining epigenetic marks at the Hes1 promoter showed that FA favored increased H3K9 and H3K19 acetylation and decreased H3K27 methylation. Hence, FA plays a positive role in cell proliferation. In differentiated ND7 cells, H3K27 methylation decreased, whereas H3K9 and H3K18 acetylation increased at the Neurog2 promoter. FA did not favor this phenotypic outcome. Additionally, in differentiated ND7 Neurog2 associated with the NeuroD1 promoter, FA decreased this association. The results suggest that the switch from proliferation to sensory neuron differentiation in DRG cells is regulated by alterations in epigenetic marks, H3K9/18 acetylation and H3K27 methylation, at Hes1 and Neurog2 promoters, as well as by Neurog2 association with NeuroD1 promoter. FA although positive for proliferation, does not appear to play a role in differentiation.  相似文献   
42.
Xenorhabdus nematophila secretes insecticidal proteins to kill its larval prey. We have isolated an approximately 58-kDa GroEL homolog, secreted in the culture medium through outer membrane vesicles. The protein was orally insecticidal to the major crop pest Helicoverpa armigera with an LC50 of approximately 3.6 microg/g diet. For optimal insecticidal activity all three domains of the protein, apical, intermediate, and equatorial, were necessary. The apical domain alone was able to bind to the larval gut membranes and manifest low level insecticidal activity. At equimolar concentrations, the apical domain contained approximately one-third and the apical-intermediate domain approximately one-half bioactivity of that of the full-length protein. Interaction of the protein with the larval gut membrane was specifically inhibited by N-acetylglucosamine and chito-oligosaccharides. Treatment of the larval gut membranes with chitinase abolished protein binding. Based on the three-dimensional structural model, mutational analysis demonstrated that surface-exposed residues Thr-347 and Ser-356 in the apical domain were crucial for both binding to the gut epithelium and insecticidal activity. Double mutant T347A,S356A was 80% less toxic (p < 0.001) than the wild type protein. The GroEL homolog showed alpha-chitin binding activity with Kd approximately 0.64 microm and Bmax approximately 4.68 micromol/g chitin. The variation in chitin binding activity of the mutant proteins was in good agreement with membrane binding characteristics and insecticidal activity. The less toxic double mutant XnGroEL showed an approximately 8-fold increase of Kd in chitin binding assay. Our results demonstrate that X. nematophila secretes an insecticidal GroEL protein with chitin binding activity.  相似文献   
43.
Tomato is considered as one of the most important sources of nutrients such as lycopene, β-carotene, flavonoids, ascorbic acid (vitamin C) and hydroxyl-cinnamic acid derivatives. The quality and quantity of nutrients in tomato fruits were decreased during the severe infection of Alternaria alternata. The present study deals with the estimation of lycopene, β-carotene, phenolic and ascorbic acid content in tomato fruits which were infected with A. alternata and its toxins such as tenuazonic acid (TeA), alternariol (AOH) and alternariol monomethyl ether (AME). The lycopene, β-carotene, ascorbic acid and phenolic content were found lowest in pathogen-infected fruits i.e. (0.66 ± 0.03 mg/g), (0.14 ± 0.01 mg/g), (1.89 ± 0.2 mg/g) and (0.58 ± 0.05 mg/g), respectively, followed by toxins-treated samples as compared to the control. The results concluded that A. alternata mostly affects the nutritional values of tomato fruits due to the combined effect of the toxins.  相似文献   
44.
Earlier, we reported that the bacteriophage lambda P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this lambda P gene-mediated lethality. In this paper, we show that under the lambda P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94 % linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from lambda P gene-mediated killing and complements E. coli dnaAts46 at 42 degrees C. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to lambda P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.  相似文献   
45.
In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399-416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization site in unbudded cells. We provide evidence that dispersal is due to endocytosis associated with cortical actin patches and that actin cables are required to counteract the dispersal and maintain Cdc42p polarity. Thus, although Cdc42p is initially polarized in an actin-independent manner, maintaining that polarity may involve a reinforcing feedback between Cdc42p and polarized actin cables to counteract the dispersing effects of actin-dependent endocytosis. In addition, we report that once a bud has formed, polarized Cdc42p becomes more resistant to dispersal, revealing an unexpected difference between unbudded and budded cells in the organization of the polarization site.  相似文献   
46.
Most genetic sequence variants that contribute to variability in complex human traits will have small effects that are not readily detectable with population samples typically used in genetic association studies. A potentially valuable tool in the gene discovery process is meta-analysis of the accumulated published data, but in order to be valid these require a sample of studies representative of the true genetic effect and thus hypothetically should include some positive and an abundance of negative reports. A survey of the literature on association studies for Alzheimer disease (AD) from January 2004–April 2005, identified 138 studies, 86 of which reported positive findings other than for apolipoprotein E (APOE), strongly indicative of publication bias. We report here an analysis of 62 genetic markers, tested for association with AD risk as well as for possible effects upon quantitative indices of AD severity (mini-mental state examination scores, age-at-onset, and cerebrospinal fluid (CSF) β-amyloid (Aβ) and CSF tau proteins). Within this set, only modest signals were present that, with the exception of APOE are easily lost when corrections for multiple hypotheses are applied. In isolation, results are thus broadly negative. Genes studied encompass both novel candidates as well as several recently claimed to be associated with AD (e.g. urokinase plasminogen activator (PLAU) and acetyl-coenzyme A acetyltransferase 1 (ACAT1)). By reporting these data we hope to encourage the publication of gene compendia to guide further studies and aid future meta-analyses aimed at resolving the involvement of genes in complex human traits.  相似文献   
47.
Activated charcoal decolorized and partially purified the protease from a crude extract of solid state fermentation of wheat bran by Rhizopus oryzae. Treatment for 5 min was sufficient. Depending on the initial colour intensity of crude, the charcoal to crude extract ratio could be optimized to achieve 90% decolorization, 85% enzyme recovery, and over a 3-fold purification, even up to 20-fold variation in batch size (from 1 ml to 20 ml crude extract). Decolorization followed the Freundlich and the Langmuir models, the Freundlich constant, n, being 2.74. Partial purification was confirmed by native PAGE and the protease band identified by gelatin-PAGE. SDS-PAGE showed the protease consisted of two sub-units (about 22 and 24 kDa). List of symbols: c o, initial solute concentration in liquid before adsorption; c *, equilibrium solute concentration in liquid after adsorption; k, empirical constant for Freundlich adsorption isotherm; U, unit of protease activity; v, volume of solution per unit weight of adsorbent.  相似文献   
48.
49.
The role of Abs in protection against respiratory infection with the intracellular bacterium Francisella tularensis is not clear. To investigate the ability of Abs to clear bacteria from the lungs and prevent systemic spread, immune serum was passively administered i.p. to naive mice before intranasal F. tularensis live vaccine strain infection. It was found that immune serum treatment provided 100% protection against lethal challenge while normal serum or Ig-depleted immune serum provided no protection. Protective efficacy was correlated with increased clearance of bacteria from the lung and required expression of FcgammaR on phagocytes, including macrophages and neutrophils. However, complement was not required for protection. In vitro experiments demonstrated that macrophages were more readily infected by Ab-opsonized bacteria but became highly efficient in killing upon activation by IFN-gamma. Consistent with this finding, in vivo Ab-mediated protection was found to be dependent upon IFN-gamma. SCID mice were not protected by passive Ab transfer, suggesting that T cells but not NK cells serve as the primary source for IFN-gamma. These data suggest that a critical interaction of humoral and cellular immune responses is necessary to provide sterilizing immunity against F. tularensis. Of considerable interest was the finding that serum Abs were capable of conferring protection against lethal respiratory tularemia when given 24-48 h postexposure. Thus, this study provides the first evidence for the therapeutic use of Abs in Francisella-infected individuals.  相似文献   
50.
Nucleotide oligomerization domain protein-1 (NOD1), a cytosolic pattern recognition receptor for the γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) is associated with the inflammatory diseases. Very little is known how bovine hepatocytes respond to specific ligands of NOD1 and sodium butyrate (SB). Therefore, the aim of our study was to investigate the role of bovine hepatocytes in NOD1-mediated inflammation during iE-DAP or LPS treatment or SB pretreatment. To achieve this aim, hepatocytes separated from cows at ∼160 days in milk (DIM) were divided into six groups: The nontreated control group (CON), the iE-DAP-treated group (DAP), the lipopolysaccharide-treated group (LPS), iE-DAP with SB group (DSB), LPS with SB group (LSB), and the SB group. Both iE-DAP and LPS highly increased the expression of both NOD1 and RIPK2, the two key factors for the immune response in hepatocytes. IκBα, NF-κB/p65, and MAP kinases (ERK, JNK, and p38) were activated through phosphorylation. The activation of NF-κB and MAPK pathway consequently increased the proinflammatory cytokines, IL-6, TNF-α, IL-8, and IFN-γ and the chemokines CCL5, CCL20, and CXCL-10. Both treatments improved iNOS/NOS2 expression. However, iE-DAP was failed to express acute phase protein SAA3, but HP and LPS HP but SAA3. These ligands also increased LRRK2, TAK1, TAB1, and β-defensins expression. The SB pretreatment at lower dose restored the function of hepatocytes by suppressing these increased molecules, as HDAC3 was inhibited. The activated NOD1 negatively regulated the expression of FOXA2. Altogether these data suggest an important role of bovine hepatocytes to promote immune responses via NOD1 expression during infection in the liver and a key role of SB to attenuate inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号