首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   44篇
  2023年   5篇
  2022年   16篇
  2021年   19篇
  2020年   11篇
  2019年   10篇
  2018年   24篇
  2017年   7篇
  2016年   15篇
  2015年   34篇
  2014年   34篇
  2013年   44篇
  2012年   43篇
  2011年   48篇
  2010年   22篇
  2009年   28篇
  2008年   34篇
  2007年   38篇
  2006年   26篇
  2005年   23篇
  2004年   38篇
  2003年   28篇
  2002年   23篇
  2001年   17篇
  2000年   14篇
  1999年   10篇
  1998年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   9篇
  1991年   8篇
  1990年   7篇
  1989年   2篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   10篇
  1984年   7篇
  1983年   5篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   5篇
  1975年   6篇
  1974年   6篇
  1973年   2篇
  1960年   2篇
  1956年   2篇
排序方式: 共有741条查询结果,搜索用时 15 毫秒
91.
Phenotypic heterogeneity in an isogenic, microbial population enables a subset of the population to persist under stress. In mycobacteria, stresses like nutrient and oxygen deprivation activate the stress response pathway involving the two-component system MprAB and the sigma factor, SigE. SigE in turn activates the expression of the stringent response regulator, rel. The enzyme polyphosphate kinase 1 (PPK1) regulates this pathway by synthesizing polyphosphate required for the activation of MprB. The precise manner in which only a subpopulation of bacterial cells develops persistence, remains unknown. Rel is required for mycobacterial persistence. Here we show that the distribution of rel expression levels in a growing population of mycobacteria is bimodal with two distinct peaks corresponding to low (L) and high (H) expression states, and further establish that a positive feedback loop involving the mprAB operon along with stochastic gene expression are responsible for the phenotypic heterogeneity. Combining single cell analysis by flow cytometry with theoretical modeling, we observe that during growth, noise-driven transitions take a subpopulation of cells from the L to the H state within a "window of opportunity" in time preceding the stationary phase. It is these cells which adapt to nutrient depletion in the stationary phase via the stringent response. We find evidence of hysteresis in the expression of rel in response to changing concentrations of PPK1. Hysteresis promotes robustness in the maintenance of the induced state. Our results provide, for the first time, evidence that bistability and stochastic gene expression could be important for the development of "heterogeneity with an advantage" in mycobacteria and suggest strategies for tackling tuberculosis like targeting transitions from the low to the high rel expression state.  相似文献   
92.
The large conductance, voltage- and Ca2+-activated potassium (MaxiK, BK) channel and caveolin-1 play important roles in regulating vascular contractility. Here, we hypothesized that the MaxiK alpha-subunit (Slo1) and caveolin-1 may interact with each other. Slo1 and caveolin-1 physiological association in native vascular tissue is strongly supported by (i) detergent-free purification of caveolin-1-rich domains demonstrating a pool of aortic Slo1 co-migrating with caveolin-1 to light density sucrose fractions, (ii) reverse co-immunoprecipitation, and (iii) double immunolabeling of freshly isolated myocytes revealing caveolin-1 and Slo1 proximity at the plasmalemma. In HEK293T cells, Slo1-caveolin-1 association was unaffected by the smooth muscle MaxiK beta1-subunit. Sequence analysis revealed two potential caveolin-binding motifs along the Slo1 C terminus, one equivalent, 1007YNMLCFGIY1015, and another mirror image, 537YTEYLSSAF545, to the consensus sequence, varphiXXXXvarphiXXvarphi. Deletion of 1007YNMLCFGIY1015 caused approximately 80% loss of Slo1-caveolin-1 association while preserving channel normal folding and overall Slo1 and caveolin-1 intracellular distribution patterns. 537YTEYLSSAF545 deletion had an insignificant dissociative effect. Interestingly, caveolin-1 coexpression reduced Slo1 surface and functional expression near 70% without affecting channel voltage sensitivity, and deletion of 1007YNMLCFGIY1015 motif obliterated channel surface expression. The results suggest 1007YNMLCFGIY1015 possible participation in Slo1 plasmalemmal targeting and demonstrate its role as a main mechanism for caveolin-1 association with Slo1 potentially serving a dual role: (i) maintaining channels in intracellular compartments downsizing their surface expression and/or (ii) serving as anchor of plasma membrane resident channels to caveolin-1-rich membranes. Because the caveolin-1 scaffolding domain is juxtamembrane, it is tempting to suggest that Slo1-caveolin-1 interaction facilitates the tethering of the Slo1 C-terminal end to the membrane.  相似文献   
93.
Recent studies have shown that nitrite is an important storage form and source of NO in biological systems. Controversy remains, however, regarding whether NO formation from nitrite occurs primarily in tissues or in blood. Questions also remain regarding the mechanism, magnitude, and contributions of several alternative pathways of nitrite-dependent NO generation in biological systems. To characterize the mechanism and magnitude of NO generation from nitrite, electron paramagnetic resonance spectroscopy, chemiluminescence NO analyzer, and immunoassays of cGMP formation were performed. The addition of nitrite triggered a large amount of NO generation in tissues such as heart and liver, but only trace NO production in blood. Carbon monoxide increased NO release from blood, suggesting that hemoglobin acts to scavenge NO not to generate it. Administration of the xanthine oxidase (XO) inhibitor oxypurinol or aldehyde oxidase (AO) inhibitor raloxifene significantly decreased NO generation from nitrite in heart or liver. NO formation rates increased dramatically with decreasing pH or with decreased oxygen tension. Isolated enzyme studies further confirm that XO and AO, but not hemoglobin, are critical nitrite reductases. Overall, NO generation from nitrite mainly occurs in tissues not in the blood, with XO and AO playing critical roles in nitrite reduction, and this process is regulated by pH, oxygen tension, nitrite, and reducing substrate concentrations.  相似文献   
94.
95.
The substitution site on 2-acetamido-2-deoxy-D-galactosyl residues in oligosaccharide chains of glycolipids was determined by permethylation of the glycolipid with methyl iodide in the presence of dimethylsulfinyl carbanion, methanolysis of the permethylated product under mild conditions, acetylation with acetic anhydride-pyridine, and identification of the resulting substituted methyl glycosides of 2-deoxy-2(N-methylacetamido)-D-galactose by g.l.c. The method was applied to glycolipids of known structure, including normal brain ganglioside, Tay-Sachs ganglioside, and Forssman glycolipid.  相似文献   
96.
Abstract

Based on worm like chain model, DNA structural parameters—tilt, roll and rise, derived from crystallographic database have been used to determine the flexibility of DNA that regulates the nucleosomal translational positioning. Theoretically derived data has been compared to the experimental values available in Ioshikhes and Trifonov's database. The methodology has been extended to determine the flexibility of 18S rRNA genome in eukarya, where yeast shows a distinct difference when compared with mammals like human, mouse and rabbit.  相似文献   
97.
98.
99.
Biofortification of bread wheat by the transfer of useful variability of high grain Fe and Zn from Aegilops kotschyi through induced homoeologous pairing is the most feasible approach to alleviate micronutrient malnutrition worldwide. Deficiency of chromosome 5B in interspecific hybrids allows homoeologous pairing and recombination of chromosomes of wheat with those of the related species. The interspecific hybrid plants without 5B chromosome showed much higher chromosome pairing than did the plants with 5B. The F1 plants without 5B chromosome were selected and repeatedly backcrossed with wheat cultivar PBW343. The chromosome number of BC2F1 plants ranged from 43 to 60 with several univalents and multivalents. Molecular markers and GISH analysis confirmed the introgression of U/S chromosomes of Ae. kotschyi and their fragments in wheat. The BC2F2 plants showed up to 125 % increase in Fe and 158 % increase in Zn compared to PBW343 with Lr24 and Yr36. Induced homoeologous pairing in the absence of 5B was found to be an effective approach for transfer of useful variability for enhanced grain Fe and Zn content for biofortification of wheat for high grain micronutrient content.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号