首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   12篇
  国内免费   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   19篇
  2012年   17篇
  2011年   18篇
  2010年   15篇
  2009年   11篇
  2008年   25篇
  2007年   23篇
  2006年   24篇
  2005年   33篇
  2004年   28篇
  2003年   25篇
  2002年   21篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   7篇
  1997年   6篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1992年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有357条查询结果,搜索用时 31 毫秒
21.
Phosphoinositide turnover is closely connected to modulation of synaptic function and is part of an important second messenger-producing system. New radioligands for imaging second messenger systems by positron emission tomography have been developed: carbon-11-labeled 1,2-diacylglycerols. The theoretical background of second messenger imaging is described in detail and the relation between the biologically active compounds and potential tracers for imaging second messenger systems is discussed. We report informative findings on postsynaptic biological responses in the living human brain of healthy normal subjects and with various diseases.  相似文献   
22.
13C cross-polarization/magic angle spinning (CP/MAS) NMR and (1)H T(1rho) experiments of poly(L-alanine) (PLA), poly(L-valine) (PLV), and PLA/PLV blends have been carried out in order to elucidate the conformational stability of the polypeptides in the solid state. These were prepared by adding a trifluoroacetic acid (TFA) solution of the polymer with a 2.0 wt/wt % of sulfuric acid (H(2)SO(4)) to alkaline water. From these experimental results, it is clarified that the conformations of PLA and PLV in their blends are strongly influenced by intermolecular hydrogen-bonding interactions that cause their miscibility at the molecular level.  相似文献   
23.
Multiform biosynthetic pathway of syringyl lignin in angiosperms   总被引:6,自引:0,他引:6  
To clarify the pathway for biosynthesis of sinapyl alcohol in angiosperms, tracer experiments using stable isotopes were performed on robinia ( Robinia pseudoacacia L.), oleander ( Nerium indicum Mill.), magnolia ( Magnolia kobus DC.) and Arabidopsis thaliana (L.) Heynh. Precursors used in the experiment were (13)C- and (2)H ( D)-labeled [8-(13)C, 3-OCD(3)]ferulic acid and [8-(13)C, 3,5-OCD(3)]sinapic acid. The incorporation of labeled precursor into lignin was confirmed by gas chromatography-mass spectrometry of the products of derivatization followed by reductive cleavage. Crude extracts of differentiating xylem or stems from these plants were also assayed for 4-coumarate-CoA ligase (4CL; EC 6.2.1.12) activity using sinapic acid and ferulic acid as substrates. In robinia and oleander, 4CL activity toward sinapic acid was detected, and labeled sinapic acids were incorporated into syringyl lignin. These results indicate that robinia and oleander have a pathway that produces sinapyl alcohol from sinapic acid via sinapoyl-CoA. By contrast, in magnolia and Arabidopsis, 4CL activity toward sinapic acid could not be detected, and labeled sinapic acid was not incorporated into lignin. These results suggest that syringyl lignin biosynthesis in angiosperms operates via multiple pathways that depend on the species.  相似文献   
24.
25.
To examine the possibility of active recycling of Emp24p between the endoplasmic reticulum (ER) and the Golgi, we sought to identify transport signal(s) in the carboxyl-terminal region of Emp24p. Reporter molecules were constructed by replacing parts of a control invertase-Wbp1p chimera with those of Emp24p, and their transport rates were assessed. The transport of the reporter was found to be accelerated by the presence of the cytoplasmic domain of Emp24p. Mutational analyses revealed that the two carboxyl-terminal residues, leucine and valine (LV), were necessary and sufficient to accelerate the transport. The acceleration was sequence specific, and the terminal valine appeared to be more important. The LV residues accelerated not only the overall transport to the vacuole but also the ER to cis-Golgi transport, suggesting its function in the ER export. Hence the LV residues are a novel anterograde transport signal. The double-phenylalanine residues did not affect the transport by itself but attenuated the effect of the anterograde transport signal. On the other hand, the transmembrane domain significantly slowed down the ER to cis-Golgi transport and effectively counteracted the anterograde transport signal at this step. It may also take part in the retrieval of the protein, because the overall transport to the vacuole was more evidently slowed down. Consistently, the mutation of a conserved glutamine residue in the transmembrane domain further slowed down the transport in a step after arriving at the cis-Golgi. Taken together, the existence of the anterograde transport signal and the elements that regulate its function support the active recycling of Emp24p.  相似文献   
26.
Cytoapheresis (CAP) therapy is widely used in ulcerative colitis (UC) patients with moderate to severe activity in Japan. The aim of this study is to predict the need of operation after CAP therapy of UC patients on an individual level using an artificial neural network system (ANN). Ninety UC patients with moderate to severe activity were treated with CAP. Data on the patients’ demographics, medication, clinical activity index (CAI) and efficacy of CAP were collected. Clinical data were divided into training data group and validation data group and analyzed using ANN to predict individual outcomes. The sensitivity and specificity of predictive expression by ANN were 0.96 and 0.97, respectively. Events of admission, operation, and use of immunomodulator, and efficacy of CAP were significantly correlated to the outcome. Requirement of operation after CAP therapy was successfully predicted by using ANN. This newly established ANN strategy would be used as powerful support of physicians in the clinical practice.  相似文献   
27.
28.
Evidence is presented that RSK1 (ribosomal S6 kinase 1), a downstream target of MAPK (mitogen-activated protein kinase), directly phosphorylates nNOS (neuronal nitric oxide synthase) on Ser847 in response to mitogens. The phosphorylation thus increases greatly following EGF (epidermal growth factor) treatment of rat pituitary tumour GH3 cells and is reduced by exposure to the MEK (MAPK/extracellular-signal-regulated kinase kinase) inhibitor PD98059. Furthermore, it is significantly enhanced by expression of wild-type RSK1 and antagonized by kinase-inactive RSK1 or specific reduction of endogenous RSK1. EGF treatment of HEK-293 (human embryonic kidney) cells, expressing RSK1 and nNOS, led to inhibition of NOS enzyme activity, associated with an increase in phosphorylation of nNOS at Ser847, as is also the case in an in vitro assay. In addition, these phenomena were significantly blocked by treatment with the RSK inhibitor Ro31-8220. Cells expressing mutant nNOS (S847A) proved resistant to phosphorylation and decrease of NOS activity. Within minutes of adding EGF to transfected cells, RSK1 associated with nNOS and subsequently dissociated following more prolonged agonist stimulation. EGF-induced formation of the nNOS-RSK1 complex was significantly decreased by PD98059 treatment. Treatment with EGF further revealed phosphorylation of nNOS on Ser847 in rat hippocampal neurons and cerebellar granule cells. This EGF-induced phosphorylation was partially blocked by PD98059 and Ro31-8220. Together, these data provide substantial evidence that RSK1 associates with and phosphorylates nNOS on Ser847 following mitogen stimulation and suggest a novel role for RSK1 in the regulation of nitric oxide function in brain.  相似文献   
29.
To cope with life-threatening high osmolarity, yeast activates the high-osmolarity glycerol (HOG) signaling pathway, whose core element is the Hog1 MAP kinase cascade. Activated Hog1 regulates the cell cycle, protein translation, and gene expression. Upstream of the HOG pathway are functionally redundant SLN1 and SHO1 signaling branches. However, neither the osmosensor nor the signal generator of the SHO1 branch has been clearly defined. Here, we show that the mucin-like transmembrane proteins Hkr1 and Msb2 are the potential osmosensors for the SHO1 branch. Hyperactive forms of Hkr1 and Msb2 can activate the HOG pathway only in the presence of Sho1, whereas a hyperactive Sho1 mutant activates the HOG pathway in the absence of both Hkr1 and Msb2, indicating that Hkr1 and Msb2 are the most upstream elements known so far in the SHO1 branch. Hkr1 and Msb2 individually form a complex with Sho1, and, upon high external osmolarity stress, appear to induce Sho1 to generate an intracellular signal. Furthermore, Msb2, but not Hkr1, can also generate an intracellular signal in a Sho1-independent manner.  相似文献   
30.
A new series of 1beta-methyl carbapenems possessing a 6,7-disubstituted imidazo[5,1-b]thiazol-2-yl group directly attached to the C-2 position of the carbapenem nucleus was prepared, and the activities of these compounds against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. To study the effect of basic moieties on anti-MRSA activity, we introduced an amino, or imino, or amidino group at the 6-position of imidazo[5,1-b]thiazole in place of the carbamoylmethyl moiety of CP5068. Anti-MRSA activities of almost all basic group-substituted carbapenems were improved, though some of the compounds showed stronger acute toxicity in mice than IPM. In order to decrease the toxicity without decreasing the activity, we introduced various additional functionalities around the basic moiety. Finally, we obtained CP5484, which has excellent anti-MRSA activity and low acute toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号