首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5060篇
  免费   368篇
  国内免费   3篇
  2024年   4篇
  2023年   19篇
  2022年   61篇
  2021年   92篇
  2020年   75篇
  2019年   97篇
  2018年   145篇
  2017年   108篇
  2016年   176篇
  2015年   257篇
  2014年   330篇
  2013年   359篇
  2012年   464篇
  2011年   449篇
  2010年   274篇
  2009年   249篇
  2008年   318篇
  2007年   315篇
  2006年   249篇
  2005年   233篇
  2004年   251篇
  2003年   194篇
  2002年   164篇
  2001年   102篇
  2000年   104篇
  1999年   68篇
  1998年   26篇
  1997年   26篇
  1996年   20篇
  1995年   18篇
  1994年   15篇
  1993年   11篇
  1992年   19篇
  1991年   24篇
  1990年   18篇
  1989年   10篇
  1988年   13篇
  1987年   7篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1982年   5篇
  1980年   5篇
  1978年   3篇
  1976年   5篇
  1975年   3篇
  1973年   4篇
  1972年   3篇
  1971年   5篇
  1967年   3篇
排序方式: 共有5431条查询结果,搜索用时 218 毫秒
861.
The human kallikrein-related peptidases (KLKs) comprise 15 members (KLK1-15) and are the single largest family of serine proteases. The KLKs are utilized, or proposed, as clinically important biomarkers and therapeutic targets of interest in cancer and neurodegenerative disease. All KLKs appear to be secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their N-terminal pro-peptide. This processing is a key step in the regulation of KLK function. Much recent work has been devoted to elucidating the potential for activation cascades between members of the KLK family, with physiologically relevant KLK regulatory cascades now described in skin desquamation and semen liquefaction. Despite this expanding knowledge of KLK regulation, details regarding the potential for functional intersection of KLKs with other regulatory proteases are essentially unknown. To elucidate such interaction potential, we have characterized the ability of proteases associated with thrombostasis to hydrolyze the pro-peptide sequences of the KLK family using a previously described pro-KLK fusion protein system. A subset of positive hydrolysis results were subsequently quantified with proteolytic assays using intact recombinant pro-KLK proteins. Pro-KLK6 and 14 can be activated by both plasmin and uPA, with plasmin being the best activator of pro-KLK6 identified to date. Pro-KLK11 and 12 can be activated by a broad-spectrum of thrombostasis proteases, with thrombin exhibiting a high degree of selectivity for pro-KLK12. The results show that proteases of the thrombostasis family can efficiently activate specific pro-KLKs, demonstrating the potential for important regulatory interactions between these two major protease families.  相似文献   
862.
The Rho guanine nucleotide exchange factor GEF-H1 is uniquely regulated by microtubule binding and is crucial in coupling microtubule dynamics to Rho-GTPase activation in a variety of normal biological situations. Here, we review the roles of GEF-H1 in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, and cancer. GEF-H1 might also contribute to pathophysiological signaling involved in leukemias, and in cancers associated with mutated p53 tumor suppressor gene, epithelial and endothelial cell dysfunction, infectious disease, and cardiac hypertrophy. We suggest that GEF-H1 could be a novel therapeutic target in multiple human diseases.  相似文献   
863.
Among the different PLA(2)s identified to date, the group IIA secretory PLA(2) (sPLA(2) GIIA) is implied in diverse pathological conditions. In this work we describe the synthesis, inhibitory activities, and structure-activity relationships (SAR) of a new class of substituted piperazine derivatives. The in vitro fluorimetric assay using two groups of enzymes, GIB and GIIA, revealed several compounds as highly potent inhibitors (IC(50)=0.1 microM). The in vivo activity assessed by ip or per os administration in a carrageenan-induced edema test in rats showed that two compounds proved to be as potent as indomethacin (10 mg/kg).  相似文献   
864.
865.
866.
Yoon KJ  Koo BK  Im SK  Jeong HW  Ghim J  Kwon MC  Moon JS  Miyata T  Kong YY 《Neuron》2008,58(4):519-531
Notch signaling is critical for the stemness of radial glial cells (RGCs) during embryonic neurogenesis. Although Notch-signal-receiving events in RGCs have been well characterized, the signal-sending mechanism by the adjacent cells is poorly understood. Here, we report that conditional inactivation of mind bomb-1 (mib1), an essential component for Notch ligand endocytosis, in mice using the nestin and hGFAP promoters resulted in complete loss of Notch activation, which leads to depletion of RGCs, and premature differentiation into intermediate progenitors (IPs) and finally neurons, which were reverted by the introduction of active Notch1. Interestingly, Mib1 expression is restricted in the migrating IPs and newborn neurons, but not in RGCs. Moreover, sorted Mib1+ IPs and neurons can send the Notch signal to neighboring cells. Our results reveal that not only newborn neurons but also IPs are essential Notch-ligand-presenting cells for maintaining RGC stemness during both symmetric and asymmetric divisions.  相似文献   
867.
Monocyte chemoattractant protein-1 (MCP-1) influences monocyte migration into sites of inflammation. This study highlights the importance of cytosolic phospholipase A2 (cPLA2)-mediated reactive oxygen species (ROS) signaling processes in the regulation of MCP-1 release as a result of toll-like receptor (TLR) activation. In macrophages, activation of TLR9 induced MCP-1 and cPLA2-phosphorylated arachidonic acid (AA) release. Inhibition of cPLA2 blocked CpG-induced MCP-1 and AA release. Although CpG stimulates phosphorylation of ERK, p38 and JNK, only inhibition of the JNK signaling pathways attenuated MCP-1 release, suggesting that the TLR9-mediated MCP-1 release was dependent upon the JNK pathway. TLR9 activation also stimulated ROS generation, while inhibition of NADPH oxidases (Noxs) blocked CpG-induced MCP-1 release. The CpG treatment increased macrophage Nox1 mRNA level, however it had no effect on macrophage Nox2 mRNA level. Overall, these results suggest that CpG enhances ROS generation through cPLA2-dependent pathways, which results in MCP-1 release.  相似文献   
868.
Fine-scale genetic structure (FSGS) in plant populations is expected to be influenced by variation in demographic processes across space and over time. I chose Hemerocallis taeanensis (Liliaceae), a perennial herb with a rapid population turnover, to quantify how demographic structure and FSGS change with a population’s history (i.e., density). Nonaccumulative O-ring statistic and spatial autocorrelation analysis (kinship coefficient, F ij ) were used to quantify spatial patterns of individuals and FSGS in four populations belonging to two population stages (expansion and maturation) in west-central Korea. The O-ring function revealed that significant aggregation of individuals occurs at short spatial scales during the earlier stage of population expansion, which reflects restricted seed dispersal around maternal individuals. However, this pattern disappears as the population density increases during population maturation, probably due to a high population density. Significant evidence of FSGS was found in two populations at the stage of population expansion (Sp, a statistic which describes the rate of decrease of pairwise kinship with distance, was 0.018 and 0.029). The results show that most seeds fall around maternal plants when initially established colonists proliferate at suitable microhabitats. In contrast to this, much lower Sp values (−0.003 and 0.004) were estimated for two populations at the stage of population maturation, which may result from the overlapping of seed shadows due to high adult density. All of these results demonstrate considerable variation in within-population demographic and genetic structures of H. taeanensis with respect to population temporal stage across the landscape.  相似文献   
869.
The enzymes phosphoglucomutase (PGM) and phosphomannomutase (PMM) play an important role in the synthesis of extracellular polysaccharide. By colony hybridization of the fosmid library of Sphingomonas chungbukensis DJ77, an open reading frame (ORF-1) of 1,626 nucleotides, whose predicted product is highly homologous with other PGM proteins from several bacterial species, was identified. An additional open reading frame (ORF-2) of 1,437 nucleotides was identified, and its encoded protein shows a high level of similarity with the PGM/PMM protein family. The two genes were cloned into a bacterial expression vector pET-15b (+) and expressed in Escherichia coli as fusion proteins with (His)(6)-tag. Both recombinant proteins (designated as SP-1 and SP-2 for ORF-1 and ORF-2, respectively) exhibited PGM and PMM activities. The molecular masses of subunits of SP-1 and SP-2 were estimated to be around 58 and 51 kDa from SDS-PAGE, respectively. However, molecular masses of SP-1 and SP-2 in their native condition were determined to be approximately 59.5 and 105.4 kDa, according to non-denaturing PAGE, respectively. The SP-1 protein has a preference for glucose-1-phosphate rather than mannose-1-phosphate, while the preferred substrate of SP-2 is mannose-1-phosphate. Thus, the existence of two proteins with bifunctional PGM/PMM activities was first found S. chungbukensis DJ77.  相似文献   
870.
The backbone dynamics of Y14F mutant of Delta(5)-3-ketosteroid isomerase (KSI) from Comamonas testosteroni has been studied in free enzyme and its complex with a steroid analogue, 19-nortestosterone hemisuccinate (19-NTHS), by (15)N NMR relaxation measurements. Model-free analysis of the relaxation data showed that the single-point mutation induced a substantial decrease in the order parameters (S(2)) in free Y14F KSI, indicating that the backbone structures of Y14F KSI became significantly mobile by mutation, while the chemical shift analysis indicated that the structural perturbations of Y14F KSI were more profound than those of wild-type (WT) KSI upon 19-NTHS binding. In the 19-NTHS complexed Y14F KSI, however, the key active site residues including Tyr14, Asp38 and Asp99 or the regions around them remained flexible with significantly reduced S(2) values, whereas the S(2) values for many of the residues in Y14F KSI became even greater than those of WT KSI upon 19-NTHS binding. The results thus suggest that the hydrogen bond network in the active site might be disrupted by the Y14F mutation, resulting in a loss of the direct interactions between the catalytic residues and 19-NTHS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号