首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4381篇
  免费   284篇
  国内免费   6篇
  4671篇
  2024年   4篇
  2023年   19篇
  2022年   53篇
  2021年   91篇
  2020年   48篇
  2019年   80篇
  2018年   113篇
  2017年   104篇
  2016年   169篇
  2015年   213篇
  2014年   276篇
  2013年   317篇
  2012年   385篇
  2011年   395篇
  2010年   209篇
  2009年   208篇
  2008年   308篇
  2007年   255篇
  2006年   194篇
  2005年   188篇
  2004年   181篇
  2003年   186篇
  2002年   140篇
  2001年   125篇
  2000年   107篇
  1999年   76篇
  1998年   34篇
  1997年   20篇
  1996年   31篇
  1995年   17篇
  1994年   13篇
  1993年   12篇
  1992年   26篇
  1991年   25篇
  1990年   10篇
  1989年   15篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1979年   1篇
  1975年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有4671条查询结果,搜索用时 0 毫秒
21.
Ischemic pre-conditioning protects the kidney against subsequent ischemia/reperfusion (I/R). This study investigated the role of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDH1), a producer of NADPH, in the ischemic pre-conditioning. Mice were pre-conditioned by 30 min of renal ischemia and 8 days of reperfusion. In non-pre-conditioned mice 30 min of ischemia had significantly increased the levels of plasma creatinine, BUN, lipid peroxidation and hydrogen peroxide in kidneys, whereas in pre-conditioned mice, the ischemia did not increase them. The reductions of reduced glutathione and NADPH after I/R were greater in non-pre-conditioned mice than in pre-conditioned mice. Ischemic pre-conditioning prevented the I/R-induced decreases in IDH1 activity and expression, but not in glucose-6-phosphate dehydrogenase activity. In conclusion, protection of the kidney afforded by ischemic pre-conditioning may be associated with increased activity of IDH1 which relates to increased levels of NADPH, increased ratios of GSH/total glutathione, less oxidative stress and less kidney injury induced by subsequent I/R insult.  相似文献   
22.
As surface temperatures are expected to rise in the future, ice‐rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH4, and investigating effects of soil hydrology on CH4 fluxes is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade‐long drying manipulation on an Arctic floodplain influences CH4‐associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage‐induced changes may then modify CH4 fluxes in the growing and nongrowing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers (below 30 cm), but higher in oxic topsoil layers (0–15 cm) compared to the control wet areas. This pattern of soil temperatures may have reduced the rates of methanogenesis while elevating those of CH4 oxidation, thereby decreasing net CH4 fluxes. The abundance of Eriophorum angustifolium, an aerenchymatous plant species, diminished significantly in the drained areas. Due to this decrease, a higher fraction of CH4 was alternatively emitted to the atmosphere by diffusion, possibly increasing the potential for CH4 oxidation and leading to a decrease in net CH4 fluxes compared to a control site. Drainage lowered CH4 fluxes by a factor of 20 during the growing season, with postdrainage changes in microbial communities, soil temperatures, and plant communities also contributing to this reduction. In contrast, we observed CH4 emissions increased by 10% in the drained areas during the nongrowing season, although this difference was insignificant given the small magnitudes of fluxes. This study showed that long‐term drainage considerably reduced CH4 fluxes through modified ecosystem properties.  相似文献   
23.
Bioprocess and Biosystems Engineering - Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based...  相似文献   
24.
The AnCOB group I intron from Aspergillus nidulans encodes a homing DNA endonuclease called I-AniI which also functions as a maturase, assisting in AnCOB intron RNA splicing. In this investigation we biochemically characterized the endonuclease activity of I-AniI in vitro and utilized competition assays to probe the relationship between the RNA- and DNA-binding sites. Despite functioning as an RNA maturase, I-AniI still retains several characteristic properties of homing endonucleases including relaxed substrate specificity, DNA cleavage product retention and instability in the reaction buffer, which suggest that the protein has not undergone dramatic structural adaptations to function as an RNA-binding protein. Nitrocellulose filter binding and kinetic burst assays showed that both nucleic acids bind I-AniI with the same 1 : 1 stoichiometry. Furthermore, in vitro competition activity assays revealed that the RNA substrate, when prebound to I-AniI, stoichiometrically inhibits DNA cleavage activity, yet in reciprocal experiments, saturating amounts of prebound DNA substrate fails to inhibit RNA splicing activity. The data suggest therefore that both nucleic acids do not bind the same single binding site, rather that I-AniI appears to contain two binding sites.  相似文献   
25.
Theiler's virus infection in the central nervous system (CNS) induces a demyelinating disease very similar to human multiple sclerosis. We have assessed cytokine gene activation upon Theiler's murine encephalomyelitis virus (TMEV) infection and potential mechanisms in order to delineate the early events in viral infection that lead to immune-mediated demyelinating disease. Infection of SJL/J primary astrocyte cultures induces selective proinflammatory cytokine genes (interleukin-12p40 [IL-12p40], IL-1, IL-6, tumor necrosis factor alpha, and beta interferon [IFN-beta]) important in the innate immune response to infection. We find that TMEV-induced cytokine gene expression is mediated by the NF-kappaB pathway based on the early nuclear NF-kappaB translocation and suppression of cytokine activation in the presence of specific inhibitors of the NF-kappaB pathway. Further studies show this to be partly independent of dsRNA-dependent protein kinase (PKR) and IFN-alpha/beta pathways. Altogether, these results demonstrate that infection of astrocytes and other CNS-resident cells by TMEV provides the early NF-kappaB-mediated signals that directly activate various proinflammatory cytokine genes involved in the initiation and amplification of inflammatory responses in the CNS known to be critical for the development of immune-mediated demyelination.  相似文献   
26.
In the yeast Saccharomyces cerevisiae, a mild heat treatment strongly induces Hsp104p which provides acquisition of thermotolerance. The mechanism by which Hsp104p protects cells from the severe heat shock has not yet been completely elucidated. In this study, a pivotal role of Hsp104p as an efficient scavenger of the reactive oxygen species (ROS) is investigated. In our previous study, we reported that Hsp104p acted as a regulator in the mitochondrial respiration pathway. In this report, the recombinant wild-type and hypersensitive ras mutants (ira2Delta) with the extrachromosomal plasmids wild-type and mutant hsp104 genes were studied. The resulting strains successfully expressed both wild-type and mutant Hsp104p and showed the thermotolerance phenotype in the strain with the functional wild-type Hsp104p expressed. Upon treatment with H2O2 and menadione, the strains with the functional Hsp104p expressed showed higher survival rates than the other mutants, indicating the protective role of Hsp104p from the oxidative stress. Fluorescence measurement of the oxidation-dependent probe, 2',7'-dichlorofluoroscein diacetate (H2DCFDA), also indicated that Hsp104p significantly reduced the amount of ROS. Resistance to the oxidative stress was independent of the amount of the glutathione in the hyperactivated ras mutants. Taken all together, this study confirms that Hsp104p plays a crucial role in keeping cells from being damaged by the oxidative stress, thus acting as a modulator of the intracellular redox state.  相似文献   
27.
Galphah (transglutaminase type II; tissue transglutaminase) is a bifunctional enzyme with transglutaminase (TGase) and guanosine triphosphatase (GTPase) activities. The GTPase function of Galphah is involved in hormonal signaling and cell growth while the TGase function plays an important role in apoptosis and in cross-linking extracellular and intracellular proteins. To analyze the regulation of these dual enzymatic activities we examined their calcium-dependence and thermal stability in enzymes from several cardiac sources (mouse heart, and normal, ischemic and dilated cardiomyopathic human hearts). The GTP binding activity of Galphah was markedly inhibited by Ca2+ whereas the TGase activity was strongly stimulated, suggesting that Ca2+ acts as a regulator, switching Galphah from a GTPase to a TGase. The TGase function of Galphah of both mouse and human hearts was more thermostable in the presence of Ca2+.  相似文献   
28.
The butterfly fauna on the Korean peninsula are comprised of both the Palearctic and Oriental species. We hypothesized that the Oriental species (immigrated across the sea) tend to have a wider niche breadth compared with the Palearctic species (immigrated from the continent) since the former migrates long distances across the sea and has to adapt to new environments. We tested this hypothesis using Korean butterfly data on distribution, habitat, food and life history traits. The distribution and ecological traits such as habitat breadth, overwintering stage, and voltinism of the Oriental species were found to be significantly different from the Palearctic species. However, the diet breadth and food plant type were not different. These results partly confirm the peninsula niche breadth hypothesis, which predicted that Oriental species have a broader niche breadth than Palearctic species.  相似文献   
29.
30.
Pain symptoms are a common complication of diabetic peripheral neuropathy or an inflammatory condition. In the most experiments, only one or two evident pain modalities are observed at diabetic peripheral neuropathy according to experimental conditions. Following diabetic peripheral neuropathy or inflammation, spinal glial activation may be considered as an important mediator in the development of pain. For this reason, the present study was aimed to address the induction of pain modalities and spinal glial expression after streptozotocin injection as compared with that of zymosan inflammation in the rat. Evaluation of pain behavior by either thermal or mechanical stimuli was performed at 3 weeks or 5 hours after either intravenous streptozotocin or zymosan. Degrees of pain were divided into 4 groups: severe, moderate, mild, and non-pain induction. On the mechanical allodynia test, zymosan evoked predominantly a severe type of pain, whereas streptozotocin induced a weak degree of pain (severe+moderate: 57.1%). Although zymosan did not evoke cold allodynia, streptozotocin evoked stronger pain behavior, compared with zymosan (severe+moderate: 50.0%). On the other hand, the high incidence of thermal hyperalgesia (severe+moderate: 90.0%) and mechanical hyperalgesia (severe+moderate: 85.7%) by streptozotocin was observed, as similar to that of zymosan. In the spinal cord, the increase of microglia and astrocyte was evident by streptozotocin, only microglia was activated by zymosan. Therefore, it is recommended that the selection of mechanical and thermal hyperalgesia is suitable for the evaluation of streptozotocin induced diabetic peripheral neuropathy. Moreover, spinal glial activation may be considered an important factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号