首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21245篇
  免费   1496篇
  国内免费   11篇
  2023年   54篇
  2022年   182篇
  2021年   412篇
  2020年   247篇
  2019年   310篇
  2018年   531篇
  2017年   393篇
  2016年   680篇
  2015年   1126篇
  2014年   1223篇
  2013年   1393篇
  2012年   1825篇
  2011年   1706篇
  2010年   1098篇
  2009年   912篇
  2008年   1344篇
  2007年   1184篇
  2006年   1052篇
  2005年   972篇
  2004年   958篇
  2003年   777篇
  2002年   784篇
  2001年   627篇
  2000年   632篇
  1999年   422篇
  1998年   166篇
  1997年   129篇
  1996年   119篇
  1995年   87篇
  1994年   82篇
  1993年   69篇
  1992年   157篇
  1991年   125篇
  1990年   88篇
  1989年   103篇
  1988年   70篇
  1987年   65篇
  1986年   69篇
  1985年   53篇
  1984年   47篇
  1983年   37篇
  1982年   27篇
  1981年   24篇
  1978年   28篇
  1977年   23篇
  1976年   32篇
  1975年   29篇
  1973年   33篇
  1971年   23篇
  1969年   24篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
191.
In vivo activation of Klebsiella aerogenes urease, a nickel-containing enzyme, requires the presence of functional UreD, UreF, and UreG accessory proteins and is further facilitated by UreE. These accessory proteins are proposed to be involved in metallocenter assembly (M. H. Lee, S. B. Mulrooney, M. J. Renner, Y. Markowicz, and R. P. Hausinger, J. Bacteriol. 174:4324-4330, 1992). A series of three UreD-urease apoprotein complexes are present in cells that express ureD at high levels, and these complexes are thought to be essential for in vivo activation of the enzyme (I.-S. Park, M. B. Carr, and R. P. Hausinger, Proc. Natl. Acad. Sci. USA 91:3233-3237, 1994). In this study, we describe the effect of accessory gene deletions on urease complex formation. The ureE, ureF, and ureG gene products were found not to be required for formation of the UreD-urease complexes; however, the complexes from the ureF deletion mutant exhibited delayed elution during size exclusion chromatography. Because these last complexes were of typical UreD-urease sizes according to native gel electrophoretic analysis, we propose that UreF alters the conformation of the UreD-urease complexes. The same studies revealed the presence of an additional series of urease apoprotein complexes present only in cells containing ureD, ureF, and ureG, along with the urease subunit genes. These new complexes were shown to contain urease, UreD, UreF, and UreG. We propose that the UreD-UreF-UreG-urease apoprotein complexes represent the activation-competent form of urease apoprotein in the cell.  相似文献   
192.
S Shin  C Park 《Journal of bacteriology》1995,177(16):4696-4702
During the search for unknown factors involved in motility, we have found that expression of the flagellar master operon flhDC is affected by mutations of the pta and ackA genes, encoding phosphotransacetylase and acetate kinase, respectively (S. Shin, J. Sheen, and C. Park, Korean J. Microbiol. 31:504-511, 1993). Here we describe results showing that this effect is modulated by externally added acetate, except when both pta and ackA are mutated, suggesting the role of acetyl phosphate, an intermediate of acetate metabolism, as a regulatory effector. Furthermore, the following evidence indicates that the phosphorylation of OmpR, a trans factor for osmoregulation, regulates flagellar expression. First, in a strain lacking ompR, the expression of flhDC is no longer responsive to a change in the level of acetyl phosphate. Second, an increase in medium osmolarity does not decrease flhDC expression in an ompR mutant. It is known that such an increase normally enhances OmpR phosphorylation. Third, OmpR protein binds to the DNA fragment containing the flhDC promoter, and its affinity is increased with phosphorylation by acetyl phosphate. DNase I footprinting revealed the regions of the flhDC promoter protected by OmpR in the presence or absence of phosphorylation. Therefore, we propose that the phosphorylated OmpR, generated by either osmolarity change or the internal level of acetyl phosphate, negatively regulates the expression of flagella.  相似文献   
193.
Enzymatic depolymerization of polysaccharides with alpha-amylase has been studied in mixed aqueous dimethylsulfoxide (DMSO)/water solvents. Polysaccharide substrate chemical compositions, configurational structures, and bonding pattersn are known to affect observed enzymatic reaction kinetics. The branching structures of polysaccharides and their effects on the kinetic mechanisms of depolymerization reactions via endo-acting hydrolyzing enzyme was studied via size exclusion chromatography coupled to low angle laser light scattering (SEC/LALLS). The glycogen branching structure is a heterogeneously distributed "cluster" structure rather than a homogeneously distributed "treelike" structure. The action pattern of alpha-amylase on glycogen, which is composed of highly branched clusters, as end-products, has a "pseudo-exo-attack" in contrast to an expected "endoattack" as seen in the hydrolysis of amylose or amylopectin substrates. These effects of branched substrates for mixed amylose/glycogen alpha-amylolysis have been predicted and demonstrated by both experimental and theoretical analysis using the kinetic model presented in this report. The "lumped" kinetic model employed, assumes that the enzyme simultaneously attacks both linear and branched substrates. In general, excellent agreement between the model predictions and the experimental observations, both qualitatively and quantitatively, was obtained. (c) 1995 John Wiley & Sons, Inc.  相似文献   
194.
To alleviate plasmid instability and to prolong the production phase of subtilisin, integrable plasmid and spore mutants are used. Compared with batch-type shake flask cultures, spore mutants' ability to produce subtilisin can be well pronounced in fed-batch and continuous cultures. Hence, the two culture methods make it possible to identify the peculiar characteristics of the spore mutants unobtainable in batch culture. Spore mutants can enhance subtilisin productivity and prolong subtilisin production time in fed-batch culture as well as enable us to use very low dilution rates (<0.1 h(-1)) without losing productivity in continuous culture, thereby improving the conversion yield of the nitrogen source. At 0.05 h(-1) the spollG mutant of Bacillus subtilis DB104 (Deltanpr Deltaapr) (Em(r)) spollG (Bim(r)):: pMK101 (Cm(r)) showed a subtilisin yield about ten times higher than that from wild-type DB104 (Deltanpr Deltaapr)::pMK101 (Cm(r)). (c) 1995 John Wiley & Sons, Inc.  相似文献   
195.
In Drosophila melanogaster males, sex chromosome pairing at meiosis is ensured by so-called pairing site(s) located discretely in the centric heterochromatin. The property of the pairing sites is not well understood. Recently, an hypothesis has been proposed that 240 bp repeats in the nontranscribed spacer region of rDNA function as the pairing sites in male meiosis. However, considerable cytogenetic evidence exists that is contrary to this hypothesis. Hence, the question is whether the chromosomal rDNA clusters, in which a high copy number of 240 bp repeats exists, are involved in the pairing. In order to resolve the problem we X-rayed Drosophila carrying the X chromosome inversion In(1)sc V2L sc 8R and generated free, mini-X chromosomes carrying a substantial amount of rDNA. We defined cytogenetically the size of the mini-chromosomes and studied their meiotic behavior. Our results demonstrate that the heterochromatin at the distal end of the inversion, whose length is approximately 0.4 times that of the fourth chromosome, includes a meiotic pairing site in the male. We discuss the cytological location of the pairing site and the possible role of rDNA in meiotic pairing.  相似文献   
196.
The chaperone SecB, which is involved in protein export inEscherichia coli, is shown by circular dichroism measurements to contain a high content of-pleated sheets. Prediction of the secondary structure of SecB is in good agreement with the observed content of-sheet. In accordance with the previous studies in which changes in conformation were assessed indirectly [Randall (1992),Science 257, 241–245], here we show that the conformation of SecB changes with the concentration of salt in the milieu and also when SecB interacts with a peptide ligand.Abbreviations ANS 1-anilino-naphthalene-8-sulfonate - CD circular dichroism - NMR nuclear magnetic resonance - CCA convex constraint analysis  相似文献   
197.
Four mutants that show the delayed leaf senescence phenotype were isolated from Arabidopsis thaliana . Genetic analyses revealed that they are all monogenic recessive mutations and fall into three complementation groups, identifying three genetic loci controlling leaf senescence in Arabidopsis . Mutations in these loci cause delay in all senescence parameters examined, including chlorophyll content, photochemical efficiency of photosystem II, relative amount of the large subunit of Rubisco, and RNase and peroxidase activity. Delay of the senescence symptoms was observed during both age-dependent in planta senescence and dark-induced artificial senescence in all of the mutant plants. The results indicate that the three genes defined by the mutations are key genetic elements controlling functional leaf senescence and provide decisive genetic evidence that leaf senescence is a genetically programmed phenomenon controlled by several monogenic loci in Arabidopsis . The results further suggest that the three genes function at a common step of age-dependent and dark-induced senescence processes. It is further shown that one of the mutations is allelic to ein2-1 , an ethylene-insensitive mutation, confirming the role of ethylene signal transduction pathway in leaf senescence of Arabidopsis .  相似文献   
198.
Green fluorescent protein (GFP) is autofluorescent. This property has made GFP useful in monitoring in vivo activities such as gene expression and protein localization. We find that GFP can be used in vitro to reveal and characterize protein-protein interactions. The interaction between the S-peptide and S-protein fragments of ribonuclease A was chosen as a model system. GFP-tagged S-peptide was produced, and the interaction of this fusion protein with S-protein was analyzed by two distinct methods: fluorescence gel retardation and fluorescence polarization. The fluorescence gel retardation assay is a rapid method to demonstrate the existence of a protein-protein interaction and to estimate the dissociation constant (Kd) of the resulting complex. The fluorescence polarization assay is an accurate method to evaluate Kd in a specified homogeneous solution and can be adapted for the high-throughput screening of protein or peptide libraries. These two methods are powerful new tools to probe protein-protein interactions.  相似文献   
199.
Two novel type I catechol 1,2-dioxygenases inducible on aniline media were isolated from Acinetobacter lwoffii K24. Although the two purified enzymes, CD I1 and CD I2, had similar intradiol cleavage activities, they showed different substrate specificities for catechol analogs, physicochemical properties, and amino acid sequences. Two catA genes, catA1 and catA2, encoding by CD I1 and CD I2, respectively, were isolated from the A. lwoffii K24 genomic library by using colony hybridization and PCR. Two DNA fragments containing the catA1 and catA2 genes were located on separate regions of the chromosome. They contained open reading frames encoding 33.4- and 30.4-kDa proteins. The amino acid sequences of the two proteins matched well with previously determined sequences. Interestingly, further analysis of the two DNA fragments revealed the locations of the catB and catC genes as well. Moreover, the DNA fragment containing catA1 had a cluster of genes in the order catB1-catC1-catA1 while the catB2-catA2-catC2 arrangement was found in the catA2 DNA fragment. These results may provide an explanation of the different substrate specificities and physicochemical properties of CD I1 and CD I2.  相似文献   
200.
H Park  M Inouye 《Journal of bacteriology》1997,179(13):4382-4390
EnvZ, a transmembrane signal transducer, is composed of a periplasmic sensor domain, transmembrane domains, and a cytoplasmic signaling domain. Between the second transmembrane domain and the cytoplasmic signaling domain there is a linker domain consisting of approximately 50 residues. In this study, we investigated the functional role of the EnvZ linker domain with respect to signal transduction. Amino acid sequence alignment of linker regions among various bacterial signal transducer proteins does not show a high sequence identity but suggests a common helix 1-loop-helix 2 structure. Among several mutations introduced in the EnvZ linker region, it was found that hydrophobic-to-charged amino acid substitutions in helix 1 and helix 2 and deletions in helix 1, loop, and helix 2 (delta14, delta8, and delta7) resulted in constitutive OmpC expression. In the linker mutant EnvZ x delta7, both kinase and phosphatase activities were significantly reduced but the ratio of kinase to phosphatase activity increased, consistent with the constitutive OmpC expression. In contrast, the purified cytoplasmic fragment of EnvZ x delta7 possessed both kinase and phosphatase activities at levels similar to those of the cytoplasmic fragment of wild-type EnvZ. In addition, the linker mutations had no direct effect on EnvZ C-terminal dimerization. These results together with previous data suggest that the linker region is not directly involved in EnvZ enzymatic activities and that it may have a crucial role in propagating a conformational change to ensure correct positioning of two EnvZ molecules within a dimer during the transmembrane signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号