首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29412篇
  免费   2149篇
  国内免费   1698篇
  33259篇
  2024年   68篇
  2023年   346篇
  2022年   846篇
  2021年   1425篇
  2020年   980篇
  2019年   1206篇
  2018年   1180篇
  2017年   840篇
  2016年   1252篇
  2015年   1916篇
  2014年   2148篇
  2013年   2320篇
  2012年   2644篇
  2011年   2316篇
  2010年   1464篇
  2009年   1256篇
  2008年   1523篇
  2007年   1345篇
  2006年   1176篇
  2005年   1000篇
  2004年   797篇
  2003年   701篇
  2002年   541篇
  2001年   481篇
  2000年   379篇
  1999年   413篇
  1998年   244篇
  1997年   267篇
  1996年   252篇
  1995年   215篇
  1994年   218篇
  1993年   150篇
  1992年   217篇
  1991年   184篇
  1990年   130篇
  1989年   107篇
  1988年   80篇
  1987年   108篇
  1986年   82篇
  1985年   69篇
  1984年   52篇
  1983年   36篇
  1982年   36篇
  1981年   26篇
  1980年   21篇
  1979年   25篇
  1978年   17篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
371.
372.
Abrupt drought–flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought–flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought–flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought–flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought–flood alteration stress, which are factors that leads to the rice grain yield reduction.  相似文献   
373.
Salmonella enterica serovar Enteritidis (SE) is a foodborne pathogen that can threaten human health through contaminated poultry products. Live poultry, chicken eggs and meat are primary sources of human salmonellosis. To understand the genetic resistance of egg‐type chickens in response to SE inoculation, global gene expression in the spleen of 20‐week‐old White Leghorn was measured using the Agilent 4 × 44 K chicken microarray at 7 and 14 days following SE inoculation (dpi). Results showed that there were 1363 genes significantly differentially expressed between inoculated and non‐inoculated groups at 7 dpi (I7/N7), of which 682 were up‐regulated and 681 were down‐regulated genes. By contrast, 688 differentially expressed genes were observed at 14 dpi (I14/N14), of which 371 were up‐regulated genes and 317 were down‐regulated genes. There were 33 and 28 immune‐related genes significantly differentially expressed in the comparisons of I7/N7 and I14/N14 respectively. Functional annotation revealed that several Gene Ontology (GO) terms related to immunity were significantly enriched between the inoculated and non‐inoculated groups at 14 dpi but not at 7 dpi, despite a similar number of immune‐related genes identified between I7/N7 and I14/N14. The immune response to SE inoculation changes with different time points following SE inoculation. The complicated interaction between the immune system and metabolism contributes to the immune responses to SE inoculation of egg‐type chickens at 14 dpi at the onset of lay. GC, TNFSF8, CD86, CD274, BLB1 and BLB2 play important roles in response to SE inoculation. The results from this study will deepen the current understanding of the genetic response of the egg‐type chicken to SE inoculation at the onset of egg laying.  相似文献   
374.
In an effort to improve biphalin’s potency and efficacy at the µ-(MOR) and δ-opioid receptors (DOR), a series of cyclic biphalin analogues 15 with a cystamine or piperazine linker at the C-terminus were designed and synthesized by solution phase synthesis using Boc-chemistry. Interestingly, all of the analogues showed balanced opioid agonist activities at all opioid receptor subtypes due to enhanced κ-opioid receptor (KOR) activity. Our results indicate that C-terminal flexible linkers play an important role in KOR activity compared to that of the other cyclic biphalin analogues with a hydrazine linker. Among them, analogue 5 is a potent (Ki?=?0.27, 0.46, and 0.87?nM; EC50?=?3.47, 1.45, and 13.5?nM at MOR, DOR, and KOR, respectively) opioid agonist with high efficacy. Based on the high potency and efficacy at the three opioid receptor subtypes, the ligand is expected to have a potential synergistic effect on relieving pain and further studies including in vivo tests are worthwhile.  相似文献   
375.
376.
377.
Aggregatibacter actinomycetemcomitans, a specific pathogen of localized aggressive periodontitis, produces a cytolethal distending toxin (CDT) that arrests eukaryotic cells irreversibly in G0/G1 or G2/M phase of the cell cycle. Although structural studies show that the aromatic patch region of CdtA plays an important role in its biological activity, the functional sites of CdtA have not been firmly established. In this study, site-specific mutagenesis strategy was employed for cdtA point mutations construction so as to examine the contributions of individual amino acids to receptor binding and the biological activity of holotoxin. The binding ability was reduced in CdtAY181ABC holotoxin and the biological function of CDT was not weaken in CdtAY105ABC, CdtAY125ABC, CdtAF109ABC and CdtAS106NBC holotoxin suggesting that these sites were not critical to CDT. But the binding activity and cell cycle arrest ability of holotoxin complexes were inhibited in CdtAW115GBC. And this site did not affect the holotoxin assembly by size exclusion chromatography. Therefore, W115 might be a critical site of CdtA binding ability. These findings suggest that the functional sites of CdtA are not only in the aromatic patch region. W115, the new functional site is critical for receptor binding and cell cycle arrest, which provides potential targets for pharmacological disruption of CDT activity.  相似文献   
378.
379.
Preclinical drug safety evaluation studies, typically conducted in two or more animal species, reveal and define dose-dependent toxicities and undesirable effects related to pharmacological mechanism of action. Idiosyncratic toxic responses are often not detected during this phase in development due to their relative rarity in incidence and differences in species sensitivity. This paper reviews and discusses the metabolic idiosyncratic toxicity and species differences observed for the experimental non-benzodiazepine anxiolytic, panadiplon. This compound produced evidence of hepatic toxicity in Phase 1 clinical trial volunteers that was not predicted by rat, dog or monkey preclinical studies. However, subsequent studies in Dutch-belted rabbits revealed a hepatic toxic syndrome consistent with a Reye's Syndrome-like idiosyncratic response. Investigations into the mechanism of toxicity using rabbits and cultured hepatocytes from several species, including human, provided a sketch of the complex pathway required to produce hepatic injury. This pathway includes drug metabolism to a carboxylic acid metabolite (cyclopropane carboxylic acid), inhibition of mitochondrial fatty acid beta-oxidation, and effects on intermediary metabolism including depletion of glycogen and disruption of glucose homeostasis. We also provide evidence suggesting that the carboxylic acid metabolite decreases the availability of liver CoA and carnitine secondary to the formation of unusual acyl derivatives. Hepatic toxicity could be ameliorated by administration of carnitine, and to a lesser extent by pantothenate. These hepatocellular pathway defects, though not directly resulting in cell death, rendered hepatocytes sensitive to secondary stress, which subsequently produced apoptosis and hepatocellular necrosis. Not all rabbits showed evidence of hepatic toxicity, suggesting that individual or species differences in any step along this pathway may account for idiosyncratic responses. These differences may be roughly applied to other metabolic idiosyncratic hepatotoxic responses and include variations in drug metabolism, effects on mitochondrial function, nutritional status, and health or underlying disease.  相似文献   
380.
Selenocysteine (Sec) tRNA (tRNA([Ser]Sec)) serves as both the site of Sec biosynthesis and the adapter molecule for donation of this amino acid to protein. The consequences on selenoprotein biosynthesis of overexpressing either the wild type or a mutant tRNA([Ser]Sec) lacking the modified base, isopentenyladenosine, in its anticodon loop were examined by introducing multiple copies of the corresponding tRNA([Ser]Sec) genes into the mouse genome. Overexpression of wild-type tRNA([Ser]Sec) did not affect selenoprotein synthesis. In contrast, the levels of numerous selenoproteins decreased in mice expressing isopentenyladenosine-deficient (i(6)A(-)) tRNA([Ser]Sec) in a protein- and tissue-specific manner. Cytosolic glutathione peroxidase and mitochondrial thioredoxin reductase 3 were the most and least affected selenoproteins, while selenoprotein expression was most and least affected in the liver and testes, respectively. The defect in selenoprotein expression occurred at translation, since selenoprotein mRNA levels were largely unaffected. Analysis of the tRNA([Ser]Sec) population showed that expression of i(6)A(-) tRNA([Ser]Sec) altered the distribution of the two major isoforms, whereby the maturation of tRNA([Ser]Sec) by methylation of the nucleoside in the wobble position was repressed. The data suggest that the levels of i(6)A(-) tRNA([Ser]Sec) and wild-type tRNA([Ser]Sec) are regulated independently and that the amount of wild-type tRNA([Ser]Sec) is determined, at least in part, by a feedback mechanism governed by the level of the tRNA([Ser]Sec) population. This study marks the first example of transgenic mice engineered to contain functional tRNA transgenes and suggests that i(6)A(-) tRNA([Ser]Sec) transgenic mice will be useful in assessing the biological roles of selenoproteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号