首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29144篇
  免费   2137篇
  国内免费   1633篇
  2024年   39篇
  2023年   312篇
  2022年   760篇
  2021年   1416篇
  2020年   971篇
  2019年   1203篇
  2018年   1177篇
  2017年   835篇
  2016年   1240篇
  2015年   1900篇
  2014年   2137篇
  2013年   2290篇
  2012年   2618篇
  2011年   2297篇
  2010年   1458篇
  2009年   1238篇
  2008年   1514篇
  2007年   1334篇
  2006年   1173篇
  2005年   987篇
  2004年   798篇
  2003年   697篇
  2002年   538篇
  2001年   480篇
  2000年   379篇
  1999年   412篇
  1998年   245篇
  1997年   269篇
  1996年   258篇
  1995年   217篇
  1994年   219篇
  1993年   152篇
  1992年   219篇
  1991年   185篇
  1990年   130篇
  1989年   106篇
  1988年   79篇
  1987年   108篇
  1986年   82篇
  1985年   69篇
  1984年   52篇
  1983年   36篇
  1982年   36篇
  1981年   26篇
  1980年   21篇
  1979年   25篇
  1978年   17篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 750 毫秒
421.
Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g?1 at 20 A g?1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g?1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm?2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications.  相似文献   
422.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
423.
A new class of layered cathodes, Li[NixCoyB1?x?y]O2 (NCB), is synthesized. The proposed NCB cathodes have a unique microstructure in which elongated primary particles are tightly packed into spherical secondary particles. The cathodes also exhibit a strong crystallographic texture in which the ab layer planes are aligned along the radial direction, facilitating Li migration. The microstructure, which effectively suppresses the formation of microcracks, improves the cycling stability of the NCB cathodes. The NCB cathode with 1.5 mol% B delivers a discharge capacity of 234 mAh g?1 at 0.1 C and retains 91.2% of its initial capacity after 100 cycles (compared to values of 229 mAh g?1 at 0.1 C and 78.8% for pristine Li[Ni0.9Co0.1]O2). This study shows the importance of controlling the microstructure to obtain the required cycling stability, especially for Ni‐rich layered cathodes, where the main cause of capacity fading is related to mechanical strain in their charged state.  相似文献   
424.
Converting CO2 to valuable carbonaceous fuels and chemicals via electrochemical CO2 reduction by using renewable energy sources is considered to be a scalable strategy with substantial environmental and economic benefits. One of the challenges in this field is to develop nanocatalysts with superior electrocatalytic activity and selectivity for targeted products. Nonmetal species modification of nanocatalysts is of great significance for the construction of distinctive active sites to overcome the kinetic limitations of CO2 reduction. These types of modification enable the efficient control of the selectivity and significantly decrease the reaction overpotential. Herein, a comprehensive review of the recent progress of nonmetal species modification of nanocatalysts for electrochemical CO2 reduction is presented. After discussing some fundamental parameters and the basic principles of CO2 reduction, including possible reaction pathways in light of theoretical modeling and experiments, the identification of active sites and elucidation of reaction mechanisms are emphasized for unraveling the role of nonmetal species modification, such as heteroatom incorporation, organic molecule decoration, electrolyte engineering, and single‐atom engineering. In the final section, future challenges and constructive perspectives are provided, facilitating the accelerated advancement of mechanism research and practical applications of green carbon cycling.  相似文献   
425.
Recently, the application of electron backscatter diffraction (EBSD) in halide perovskites has enabled the correlation of the micro‐structural arrangement of polycrystalline grains with other properties (optical, electrical, mechanical, and chemical) in a “pixel‐by‐pixel” approach. Most studies so far have used an ultra‐sensitive electron beam detector that has sensitivity thousands of times higher than a traditional scintillator screen and charge coupled device camera, enabling much lower beam currents. An alternative approach has been the use of low vacuum measurement conditions to avoid charge buildup that leads to damage. This review focuses on introducing the classical EBSD technique to the halide perovskite community, where it has been highly underutilized due to beaminduced damage in these relatively unstable materials. Recent research is used to dispel some common misconceptions about grain boundaries in halide perovskites and highlight what has been learned by comparing and correlating EBSD with other techniques. Additionally, the remaining limitations, development challenges, and future of the EBSD technique for halide perovskites are discussed. Successful utilization of the EBSD technique as a common characterization tool in the halide perovskite community will enable scientists and engineers to develop maps of cross correlated properties, helping to unlock the full potential of this complex material system.  相似文献   
426.
Atomic catalysts (AC) are emerging as a highly attractive research topic, especially in sustainable energy fields. Lack of a full picture of the hydrogen evolution reaction (HER) impedes the future development of potential electrocatalysts. In this work, the systematic investigation of the HER process in graphdyine (GDY) based AC is presented in terms of the adsorption energies, adsorption trend, electronic structures, reaction pathway, and active sites. This comprehensive work innovatively reveals GDY based AC for HER covering all the transition metals (TM) and lanthanide (Ln) metals, enabling the screening of potential catalysts. The density functional theory (DFT) calculations carefully explore the HER performance beyond the comparison of sole H adsorption. Therefore, the screened catalysts candidates not only match with experimental results but also provide significant references for novel catalysts. Moreover, the machine learning (ML) technique bag‐tree approach is innovatively utilized based on the fuzzy model for data separation and converse prediction of the HER performance, which indicates a similar result to the theoretical calculations. From two independent theoretical perspectives (DFT and ML), this work proposes pivotal guidelines for experimental catalyst design and synthesis. The proposed advanced research strategy shows great potential as a general approach in other energy‐related areas.  相似文献   
427.
Bioprocess and Biosystems Engineering - Bioremediation methods have been successfully applied to the removal of organic pollutants for decades, but the responses of the microbial community to...  相似文献   
428.
Sun  Weifeng  Wu  Yuanming  Ding  Wenwu  Wang  Li  Wu  Lunjie  Lin  Lu  Che  Zhenming  Zhu  Longbao  Liu  Yi  Chen  Xiaohua 《Bioprocess and biosystems engineering》2020,43(4):701-710
Bioprocess and Biosystems Engineering - Currently, some cases about the expression of flavor peptides with microorganisms were reported owing to the obvious advantages of biological expression over...  相似文献   
429.
Zheng  Zhihang  Li  Min  Liu  Zhihua  Jin  Xia  Sun  Jin 《中国病毒学》2020,35(5):626-636
Virologica Sinica - Dengue virus (DENV) is a single-stranded RNA virus transmitted by mosquitoes in tropical and subtropical regions. It causes dengue fever, dengue hemorrhagic fever and dengue...  相似文献   
430.
Tian  Suyan  Zhu  Xuetong  Sun  Xuejuan  Wang  Jinmei  Zhou  Qi  Wang  Chi  Chen  Li  Li  Shanji  Xu  Jiancheng 《中国病毒学》2020,35(6):811-819
Virologica Sinica - The temporal change patterns of laboratory data may provide insightful clues into the whole course of COVID-19. This study aimed to evaluate longitudinal change patterns of key...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号