首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29140篇
  免费   2125篇
  国内免费   1592篇
  32857篇
  2024年   64篇
  2023年   345篇
  2022年   830篇
  2021年   1405篇
  2020年   961篇
  2019年   1188篇
  2018年   1167篇
  2017年   828篇
  2016年   1227篇
  2015年   1895篇
  2014年   2124篇
  2013年   2283篇
  2012年   2610篇
  2011年   2286篇
  2010年   1452篇
  2009年   1234篇
  2008年   1511篇
  2007年   1328篇
  2006年   1165篇
  2005年   979篇
  2004年   790篇
  2003年   695篇
  2002年   533篇
  2001年   479篇
  2000年   379篇
  1999年   411篇
  1998年   243篇
  1997年   265篇
  1996年   252篇
  1995年   214篇
  1994年   217篇
  1993年   150篇
  1992年   216篇
  1991年   184篇
  1990年   130篇
  1989年   106篇
  1988年   79篇
  1987年   108篇
  1986年   82篇
  1985年   69篇
  1984年   52篇
  1983年   36篇
  1982年   36篇
  1981年   26篇
  1980年   21篇
  1979年   25篇
  1978年   17篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The transport properties and differential conductance of the heterostructures constructed by (5,5) single wall carbon nanotube (SWCNT) and (5,5) single wall boron nitride nanotube (SWBNNT) are investigated using density functional theory in combination with non-equilibrium Green’s functions. We find that the transmission conductance of (5,5) BN/C nanotube heterostructure is not only continually depressed as the BNNT region increases but also the drop of the conductance is uniform in the energy window (?1.43 eV, 1 eV), which leads to linear I–V dependence for the systems when the bias is within this energy range. Moreover, the differential conductance linearly decreases when n?≤?3 but exponentially decreases when n?≥?3 for (5,5)(BN) n /C heterostructure. Such tunable differential conductance of (5,5) BN/C nanotube heterostructure mainly derives from the blockage of the transport channels induced by the semiconductive BN segment.
Figure
The transmission conductance and differential conductance of (5,5) BN/C nanotube heterostructure is continually depressed as the BNNT region increases.  相似文献   
992.
A series of purine derivatives with nitramine groups are calculated by using density functional theory (DFT). The molecular theory density, heats of formation, bond dissociation energies and detonation performance are investigated at DFT-B3LYP/6-311G** level. The isodesmic reaction method is employed to calculate the HOFs of the energies obtained from electronic structure calculations. Results show that the position of nitramine groups can influence the values of HOFs. The bond dissociation energies and the impact sensitivity are analyzed to investigate the thermal stability of the purine derivatives. The calculated bond dissociation energies of ring-NHNO2 and NH-NO2 bond show that the NH-NO2 bond should be the trigger bond in pyrolysis processes. The H50 of most compounds are larger than that of CL-20 and RDX.  相似文献   
993.
The expression of the chemorepellent Sema3a is inversely related to sympathetic innervation. We investigated whether overexpression of Sema3a in the myocardial infarction (MI) border zone could attenuate sympathetic hyper‐innervation and decrease the vulnerability to malignant ventricular tachyarrhythmia (VT) in rats. Survived MI rats were randomized to phosphate buffered saline (PBS, n = 12); mock lentivirus (MLV, n = 13) and lentivirus‐mediated overexpression of Sema3a (SLV, n = 13) groups. Sham‐operated rats served as control group (CON, n = 20). Cardiac function and electrophysiological study (PES) were performed at 1 week later. Blood and tissue samples were collected for histological analysis, epinephrine (EPI), growth‐associated factor 43 (GAP43) and tyrosine hydroxylase (TH) measurements. QTc intervals were significantly shorter in SLV group than in PBS and MLV groups (168.6 ± 7.8 vs. 178.1 ± 9.5 and 180.9 ± 8.2 ms, all P < 0.01). Inducibility of VT by PES was significantly lower in the SLV group [30.8% (4/13)] than in PBS [66.7% (8/12)] and MLV [61.5% (8/13)] groups (P < 0.05). mRNA and protein expressions of Sema3a were significantly higher and the protein expression of GAP43 and TH was significantly lower at 7 days after transduction in SLV group compared with PBS, MLV and CON groups. Myocardial EPI in the border zone was also significantly lower in SLV group than in PBS and MLV group (8.73 ± 1.30 vs. 11.94 ± 1.71 and 12.24 ± 1.54 μg/g protein, P < 0.001). Overexpression of Sema3a in MI border zone could reduce the inducibility of ventricular arrhythmias by reducing sympathetic hyper‐reinnervation after infarction.  相似文献   
994.
How to generate a non-zero first hyperpolarizability for a centrosymmetric molecule is a challenging question. In this paper, an external (pump) electric field is used to make a centrosymmetric benzene molecule generate a non-zero value of the electric field induced first hyperpolarizability (β F ). This comes from the centrosymmetry breaking of electron cloud. Two interesting rules are exhibited. (1) β F is anisotropic for different directional fields (F i, i?=?X, Y, Z). (2) The field dependence of β F is a non-monotonic function, and an optimum external electric field causes the maximum value of β F . The largest first hyperpolarizability β F reaches the considerable level of 3.9?×?105 a.u. under F Y?=?330?×?10?4 a.u. for benzene. The external electric field effects on non-centrosymmetric edge-modified graphene ribbon H2N-(3,3)ZGNR-NO2 was also studied in this work. The first hyperpolarizability reaches as much as 2.1?×?107 a.u. under F X?=?600?×?10?4 a.u. for H2N-(3,3)ZGNR-NO2. We show that the external electric field can not only create a non-zero first hyperpolarizability for centrosymmetric molecule, but also remarkably enhance the first hyperpolarizability for a non-centrosymmetric molecule.  相似文献   
995.
The bis(heptalene)dimetal complexes (C12H10)2M2 of the first row transition metals from Ti to Ni are predicted by density functional theory to exhibit “submarine” sandwich structures with a pair of metal atoms sandwiched between the two heptalene rings. For the early transition metal derivatives (C12H10)2M2 (M = V, Cr) there are two types of such structures. In one structural type the metals are sandwiched between two heptahapto heptalene rings with metal-metal distances (3.5–3.8 Å) too long for direct metal-metal bonding. The other type of (C12H10)2M2 (M = V, Cr, Mn) structure has a pair of bonded metal atoms sandwiched between a fully bonded heptalene ligand and a heptalene ligand bonded to the metals only through an eight-carbon heptafulvene subunit, leaving an uncomplexed cis-1,3-diene unit. The formal metal-metal bond orders in these latter structures are 3, 2, and 1 for M = V, Cr, and Mn with predicted bond lengths of 2.5, 2.7, and 2.8 Å, respectively. For (C12H10)2Fe2 a singlet structure with each iron atom sandwiched between a hexahapto and a tetrahapto heptalene ring is energetically preferred over an alternate structure with ferrocene-like iron atoms sandwiched between two pentahapto heptalene rings. Partial bonding of each heptalene ring to the metal atoms occurs in the late transition metal derivatives (C12H10)2M2 (M = Co, Ni). This leads to an unsymmetrical structure for the cobalt derivative and a structure for the nickel derivative with each nickel atom sandwiched between a trihapto ligand and a tetrahapto ligand.
Figure
The bis(heptalene) dimetal complexes (C12H10)2M2 (M = Ti to Ni) are predicted by density functional theory to have a “submarine” sandwich structure with a pair of metal atoms sandwiched between the two heptalene rings. In the early transition metal derivatives (C12H10)2M2 (M = V, Cr) the metal atoms are sandwiched between two heptahapto heptalene rings. In contrast, for (C12H10)2M2 (M = Mn, Fe, Co, Ni) the heptalene rings are only partially bonded to the metal atoms.  相似文献   
996.
In the present paper, a new type of Lewis acid–base complex BX3???Li@Calix[4]pyrrole (X = H and F) was designed and assembled based on electride molecule Li@calix[4]pyrrole (as a Lewis base) and the electron deficient molecule BX3 (as a Lewis acid) by employing quantum mechanical calculation. The new Lewis acid–base complex offers an interesting push-excess electron-pull (P-e-P) framework to enhance the stability and nonlinear optical (NLO) response. To measure the nonlinear optical response, static first hyperpolarizabilities (β 0) are exhibited. Significantly, point-face assembled Lewis acid–base complex BF3???Li@Calix[4]pyrrole (II) has considerable first hyperpolarizabilities (β 0) value (1.4?×?106 a.u.), which is about 117 times larger than reported 11,721 a.u. of electride Li@Calix[4]pyrrole. Further investigations show that, in BX3???Li@Calix[4]pyrrole with P-e-P framework, a strong charge-transfer transition from the ground state to the excited state contributes to the enhancement of first hyperpolarizability. Theory calculation of enthalpies of reaction (ΔrH0) at 298 K demonstrates that it is feasible to synthetize the complexes BX3???Li@Calix[4]pyrrole. In addition, compared with Li@Calix[4]pyrrole, the vertical ionization potential (VIP) and HOMO–LUMO gap of BX3???Li@Calix[4]pyrrole have obviously increased, due to the introduction of the Lewis acid molecule BX3. The novel Lewis acid–base NLO complex possesses not only a large nonlinear optical response but also higher stability.
Figure
A novel Lewis acid–base complex is first proposed by the combination of usual Lewis acid and an electride. It offers an interesting push-excess electron-pull framework to enhance the stability and nonlinear optical response.  相似文献   
997.
998.
The Escherichia coli proteome was digested with trypsin and fractionated using SPE on a C18 SPE column. Seven fractions were collected and analyzed by CZE‐ESI‐MS/MS. The separation was performed in a 60‐cm‐long linear polyacrylamide‐coated capillary with a 0.1% v/v formic acid separation buffer. An electrokinetic sheath‐flow electrospray interface was used to couple the separation capillary with an Orbitrap‐Velos operating in higher‐energy collisional dissociation mode. Each CZE‐ESI‐MS/MS run lasted 50 min and total MS time was 350 min. A total of 23 706 peptide spectra matches, 4902 peptide IDs, and 871 protein group IDs were generated using MASCOT with false discovery rate less than 1% on the peptide level. The total mass spectrometer analysis time was less than 6 h, the sample identification rate (145 proteins/h) was more than two times higher than previous studies of the E. coli proteome, and the amount of sample consumed (<1 μg) was roughly fourfold less than previous studies. These results demonstrate that CZE is a useful tool for the bottom‐up analysis of prokaryote proteomes.  相似文献   
999.
The International Plant Proteomics Organization (INPPO) is a non‐profit organization whose members are scientists involved or interested in plant proteomics. Since the publication of the first INPPO highlights in 2012, continued progress on many of the organization's mandates/goals has been achieved. Two major events are emphasized in this second INPPO highlights. First, the change of guard at the top, passing of the baton from Dominique Job, INPPO founding President to Ganesh Kumar Agrawal as the incoming President. Ganesh K. Agrawal, along with Dominique Job and Randeep Rakwal initiated the INPPO. Second, the most recent INPPO achievements and future targets, mainly the organization of first the INPPO World Congress in 2014, tentatively planned for Hamburg (Germany), are mentioned.  相似文献   
1000.
Congjiao Sun  Guiyun Xu  Ning Yang 《Proteomics》2013,13(23-24):3523-3536
Eggshell strength is a crucial economic trait for table egg production. During the process of eggshell formation, uncalcified eggs are bathed in uterine fluid that plays regulatory roles in eggshell calcification. In this study, a label‐free MS‐based protein quantification technology was used to detect differences in protein abundance between eggshell matrix from strong and weak eggs (shell matrix protein from strong eggshells and shell matrix protein from weak eggshells) and between the corresponding uterine fluids bathing strong and weak eggs (uterine fluid bathing strong eggs and uterine fluid bathing weak eggs) in a chicken population. Here, we reported the first global proteomic analysis of uterine fluid. A total of 577 and 466 proteins were identified in uterine fluid and eggshell matrix, respectively. Of 447 identified proteins in uterine fluid bathing strong eggs, up to 357 (80%) proteins were in common with proteins in uterine fluid bathing weak eggs. Similarly, up to 83% (328/396) of the proteins in shell matrix protein from strong eggshells were in common with the proteins in shell matrix protein from weak eggshells. The large amount of common proteins indicated that the difference in protein abundance should play essential roles in influencing eggshell strength. Ultimately, 15 proteins mainly relating to eggshell matrix specific proteins, calcium binding and transportation, protein folding and sorting, bone development or diseases, and thyroid hormone activity were considered to have closer association with the formation of strong eggshell.  相似文献   
[首页] « 上一页 [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号